Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis

Abstract

CYCLINS, originally discovered in the eggs of marine invertebrates, are proteins which undergo dramatic cycles of synthesis followed by degradation at the metaphase–anaphase transition of cell division1–3. That they participate in the G2–M transition is supported by the fact that when synthetic cyclin messenger RNAs from clam and sea urchin are microinjected into the G2-arrested oocytes of Xenopus, they induce maturation2,4. The cyclin of fission yeast is the product of the cdc13 gene, which is known to interact with cdc2, a gene required for the entry into mitosis5–10. We have cloned the genes that encode A-type and B-type cyclins from Drosophila melanogaster by virtue of their sequence similarity to oligonucleotides corresponding to conserved regions of the cyclin genes. We show that both genes encode abundant maternal mRNAs, but whereas the cyclin A mRNA is relatively uniformly distributed before cell formation, the cyclin B mRNA becomes localized to the developing pole cells. In larvae, cyclin A is expressed predominantly in brain and imaginal disks, whereas cyclin B transcripts are abundant in testes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cell 33, 389–396 (1983).

    Article  CAS  Google Scholar 

  2. Swenson, K. I., Farrell, K. M. & Ruderman, J. V. Cell 47, 861–870 (1986).

    Article  CAS  Google Scholar 

  3. Standart, N., Minshull, J., Pines, J. & Hunt, T. Devl Biol. 124, 248–258 (1987).

    Article  CAS  Google Scholar 

  4. Pines, J. & Hunt, T. EMBO J. 6, 2987–2995 (1987).

    Article  CAS  Google Scholar 

  5. Solomon, M., Booher, R., Kirschner, M. & Beach, D. Cell 54, 738–739 (1988).

    Article  CAS  Google Scholar 

  6. Goebl, M. & Byers, B. Cell 54, 739–740 (1988).

    CAS  Google Scholar 

  7. Booher, R. & Beach, D. EMBO J. 7, 2321–2327 (1988).

    Article  CAS  Google Scholar 

  8. Hagan, I., Hayles, J. & Nurse, P. J. cell. Sci. 91, 587–595 (1988).

    CAS  PubMed  Google Scholar 

  9. Booher, R. & Beach, D. EMBO J. 6, 3441–3447 (1987).

    Article  CAS  Google Scholar 

  10. Hayles, J., Beach, D., Durkacz, B. & Nurse, P. Molec. Gen. Genet. 202, 291–293 (1986).

    Article  CAS  Google Scholar 

  11. Zalokar, M. & Erk, I. J. microbiol Cell 25, 97–106 (1976).

    Google Scholar 

  12. Foe, V. & Alberts, B. J. cell Sci. 61, 31–70 (1983).

    CAS  PubMed  Google Scholar 

  13. Hartenstein, V. & Campos-Ortega, J. A. Wilhelm Roux Arch. dev. Biol. 194, 181–195 (1985).

    Article  Google Scholar 

  14. MacDonald, P. M. & Struhl, G. Nature 336, 595–598 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Bryant, P. & Levinson, P. Devl Biol. 107, 355–363 (1985).

    Article  CAS  Google Scholar 

  16. Mozer, B., Marlor, R., Parkhurst, S. & Corces, V. Molec. cell. Biol. 5, 885–889 (1985).

    Article  CAS  Google Scholar 

  17. Wood, W. I., Gitschier, J., Lasky, L. A. & Lawn, R. M. Proc. natn. Acad. Sci. U.S.A. 82, 1585–1588 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Lehner, C. F. & O'Farrell, P. H. Cell (in the press).

  19. Whitfield, W. G. F., Millar, S. E., Saumweber, H., Frasch, M. & Glover, D. M. J. cell. Sci. 89, 467–480 (1988).

    CAS  PubMed  Google Scholar 

  20. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1985).

    Book  Google Scholar 

  21. Akam, M. E. & Martinez-Arias, A. EMBO J. 4, 1689–1700 (1985).

    Article  CAS  Google Scholar 

  22. Sanchez-Herrero E. & Crosby M. A. EMBO J. 7, 2163–2173 (1988).

    Article  CAS  Google Scholar 

  23. Ingham, P. W. Cold Spring Harb. Symp. quant Biol. 50, 201–208 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitfield, W., González, C., Sánchez-Herrero, E. et al. Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis. Nature 338, 337–340 (1989). https://doi.org/10.1038/338337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing