Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The core–mantle boundary layer and deep Earth dynamics

Abstract

Recent seismological work has revealed new structures in the boundary layer between the Earth's core and mantle that are altering and expanding perspectives of the role this region plays in both core and mantle dynamics. Clear challenges for future research in seismological, experimental, theoretical and computational geophysics have emerged, holding the key to understanding both this dynamic system and geological phenomena observed at the Earth's surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seismic-wave ray-paths from a deep focus source (circle) to a receiver (triangle) for phases that have been extensively used to image the velocity structure of the deep mantle.
Figure 2: Mollewide projections summarizing spatial patterns of recently determined seismological characteristics of the CMB boundary layer.
Figure 3: Recent high-resolution global seismic tomography models for P-wave31 and S-wave30 velocity heterogeneity near depths (Z) of 1,350 km (top row) and 2,750 km (bottom row).
Figure 4: The main classes of D″ shear-wave velocity structures.
Figure 5: Spatial patterns of large-scale mantle and core dynamical structures.
Figure 6: Diagram of possible large-scale CMB structures.

Similar content being viewed by others

References

  1. Lay, T. Structure of the core-mantle transition zone: A chemical and thermal boundary layer. Eos 70, 54–55, 58–59 (1989).

    Article  ADS  Google Scholar 

  2. Loper, D. E. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  3. Williams, Q. & Jeanloz, R. Melting relations in the iron-sulfur system at high pressures: Implications for the thermal state of the Earth. J. Geophys. Res. 95, 19299–19310 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Boehler, R. Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Davies, G. F. Ocean bathymetry and mantle convection, 1, Large-scale flow and hotspots. J. Geophys. Res. 93, 10447–10480 (1988).

    Google Scholar 

  6. Sleep, N. H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  7. Loper, D. E. Mantle plumes. Tectonophysics 187, 373–384 (1991).

    Article  ADS  Google Scholar 

  8. Hoffman, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  ADS  Google Scholar 

  9. Woodhead, J. D., Greenwood, P., Harmon, R. S. & Stoffers, P. Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 362, 809–813 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Su, W-J., Woodward, R. & Dziewonski, A. M. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res. 99, 6945–6980 (1994).

    Article  ADS  Google Scholar 

  11. Li, X. D. & Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    Article  ADS  Google Scholar 

  12. Masters, T. G., Johnson, S., Laske, G. & Bolton, H. Ashear-velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1411 (1996).

    Article  ADS  Google Scholar 

  13. Gubbins, D. Core-mantle interactions. Tectonophysics 187, 385–391 (1991).

    Article  ADS  Google Scholar 

  14. Bloxham, J. & Jackson, A. Fluid flow near the surface of Earth's outer core. Rev. Geophys. 29, 97–120 (1991).

    Article  ADS  Google Scholar 

  15. Hide, R., Speith, M. A., Clayton, R. W., Hager, B. H. & Voorhies, C. V. in Relating Geophysical Structures and Processes: The Jeffreys Volume (eds Aki, K. & Dmowska, R.) 107–120 (Geophys. Monogr. Ser. 76, Am. Geophys Union, Washington DC, (1993)).

    Google Scholar 

  16. Knittle, E. & Jeanloz, R. Earth's core-mantle boundary: Results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Poirier, J.-P. Core-infiltrated mantle and the nature of the D″ layer. J. Geomagn. Geoelectr. 45, 1221–1227 (1993).

    Article  ADS  Google Scholar 

  18. Lay, T. Seismology of the lower mantle and core-mantle boundary. Rev. Geophys. Suppl. 325–328 (1995).

  19. Weber, M. et al. in Seismic Modeling of the Earth's Structure (eds Boschi, E., Ekström, G. & Morelli, A.) 399–442 (Istit. Naz. di Geophys., Rome, (1996)).

    Google Scholar 

  20. Ding, X. & Helmberger, D. V. Modeling D″ structure beneath Central America with broadband seismic data. Phys. Earth Planet Inter. 101, 245–270 (1997).

    Article  ADS  Google Scholar 

  21. Wysession, M. E. et al. The D″ discontinuity and its implications.in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) (Am. Geophys. Union, in the press).

  22. Vinnik, L., Romanowicz, B., Le Stunff, Y. & Makeyeva, L. Seismic anisotropy in the D″ layer. Geophys. Res. Lett. 22, 1657–1660 (1995).

    Article  ADS  Google Scholar 

  23. Kendall, J.-M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Matzel, E., Sen, M. K. & Grand, S. P. Evidence for anisotropy in the deep mantle beneath Alaska. Geophys. Res. Lett. 23, 2417–2420 (1996).

    Article  ADS  Google Scholar 

  25. Garnero, E. J. & Lay, T. Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. J. Geophys. Res. 102, 8121–8135 (1997).

    Article  ADS  Google Scholar 

  26. Lay, T., Garnero, E. J., Williams, Q., Kellogg, L. & Wysession, M. E. Seismic wave anisotropy in the D″ region and its implications.in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) (Am. Geophys. Union, in the press).

  27. Garnero, E. J. & Helmberger, D. V. Avery slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases. Phys. Earth Planet. Inter. 91, 161–176 (1995).

    Article  ADS  Google Scholar 

  28. Mori, J. & Helmberger, D. V. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. J. Geophys. Res. 100, 20359–20365 (1995).

    Article  ADS  Google Scholar 

  29. Garnero, E. J., Revenaugh, J., Williams, Q., Lay, T. & Kellogg, L. Ultra-low velocity zone at the core-mantle boundary.in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) (Am Geophys. Union, in the press).

  30. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  31. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Young, C. J. & Lay, T. The core mantle boundary. Annu. Rev. Earth Planet. Sci. 15, 25–46 (1987).

    Article  ADS  CAS  Google Scholar 

  33. Wysession, M. E. Large scale structure at the core-mantle boundary from core-diffracted waves. Nature 382, 244–248 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Lay, T. & Helmberger, D. V. Alower mantle S-wave triplication and the shear velocity structure of D″. Geophys. J. R. Astron. Soc. 75, 799–838 (1983).

    Article  ADS  Google Scholar 

  35. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Revenaugh, J. S. & Meyer, R. Seismic evidence of partial melt within a possibly ubiquitous low velocity layer at the base of the mantle. Science 277, 670–673 (1997).

    Article  CAS  Google Scholar 

  37. Garnero, E. J. & Helmberger, D. V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23, 977–980 (1996).

    Article  ADS  Google Scholar 

  38. Bataille, K., Wu, R. S. & Flatté, S. M. Inhomogeneities near the core-mantle boundary evidenced from scattered waves: A review. Pure Appl. Geophys. 132, 151–174 (1990).

    Article  ADS  Google Scholar 

  39. Vidale, J. E. & Hedlin, M. A. H. Evidence for partial melt at the core–mantle boundary north of Tonga from the strong scattering of seismic waves. Nature 391, 682–685 (1998).

    Article  ADS  CAS  Google Scholar 

  40. Kaneshima, S. & Silver, P. G. Asearch for source-side anisotropy. Geophys. Res. Lett. 19, 1049–1052 (1992).

    Article  ADS  Google Scholar 

  41. Meade, C., Silver, P. G. & Kaneshima, S. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett. 22, 1293–1296 (1995).

    Article  ADS  Google Scholar 

  42. Pulliam, J. & Sen, M. K. Seismic anisotropy in the core-mantle transition zone. Geophys. J. Int. (in the press).

  43. Kendall, J.-M. & Silver, P. G. Investigating causes of D″ anisotropy.in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) (Am Geophys. Union, in the press).

  44. Ritsema, J., Lay, T., Garnero, E. J. & Benz, H. Seismic anisotropy in the lowermost mantle beneath the Pacific. Geophys. Res. Lett. (in the press).

  45. Weber, M. Pand S wave reflections from anomalies in the lowermost mantle. Geophys. J. Int. 115, 183–210 (1993).

    Article  ADS  Google Scholar 

  46. Lay, T., Garnero, E. J., Young, C. J. & Gaherty, J. B. Scale-lengths of shear velocity heterogeneity at the base of the mantle from S wave differential travel times. J. Geophys. Res. 102, 9887–9910 (1997).

    Article  ADS  Google Scholar 

  47. Lay, T. & Young, C. J. Analysis of seismic SV waves in the core's penumbra. Geophys. Res. Lett. 18, 1373–1376 (1991).

    Article  ADS  Google Scholar 

  48. Kendall, J.-M. & Nangini, C. Lateral variations in D″ below the Caribbean. Geophys. Res. Lett. 23, 399–402 (1996).

    Article  ADS  Google Scholar 

  49. Ritsema, J., Garnero, E. & Lay, T. Astrongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific. J. Geophys. Res. 102, 20395–20411 (1997).

    Article  ADS  Google Scholar 

  50. Stacey, F. D. & Loper, D. E. The thermal boundary layer interpretation of D″ and its role as a plume source. Phys. Earth Planet. Inter. 33, 45–55 (1983).

    Article  ADS  Google Scholar 

  51. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    Article  ADS  MATH  Google Scholar 

  52. Whitehead, J. A. & Luther, D. S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705–717 (1975).

    Article  ADS  Google Scholar 

  53. Duncan, R. A. & Richards, M. A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29, 31–50 (1991).

    Article  ADS  Google Scholar 

  54. Ribe, N. M. & de Valpine, D. P. The global hotspot distribution and instability of D″. Geophys. Res. Lett. 21, 1507–1510 (1994).

    Article  ADS  Google Scholar 

  55. Bercovici, D. & Kelly, A. The non-linear initiation of diapirs and plume heads. Phys. Earth Planet. Inter. 101, 119–130 (1997).

    Article  ADS  Google Scholar 

  56. Karato, S. & Li, P. Diffusion creep in perovskite: Implications for the rheology of the lower mantle. Science 255, 1238–1240 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Williams, Q., Revenaugh, J. & Ganero, E. J. Acorrelation between ultralow basal velocities in the mantle and hotspots. Science (submitted).

  58. Watson, S. & McKenzie, D. P. Melt generation by plumes: A study of Hawaiian volcanism. J. Petrol. 12, 501–537 (1991).

    Article  ADS  Google Scholar 

  59. Nataf, H.-C. & vanDecar, J. Seismological detection of a mantle plume? Nature 264, 115–120 (1993).

    Article  ADS  Google Scholar 

  60. Farnetani, C. G. & Richards, M. A. Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett. 136, 251–267 (1995).

    Article  ADS  CAS  Google Scholar 

  61. Leitch, A. M., Steinbach, V. & Yuen, D. A. Centerline temperature of mantle plumes in various geometries: Incompressible flow. J. Geophys. Res. 101, 21928–21846 (1996).

    Article  Google Scholar 

  62. Farnetani, C. G. Excess temperature of mantle plumes: The role of chemical stratification across D″. Geophys. Res. Lett. 24, 1583–1586 (1997).

    Article  ADS  CAS  Google Scholar 

  63. Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes — evidence for core-mantle interaction. Science 269, 819–822 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Storey, B. C. The role of mantle plumes in continental breakup — case histories from Gondwanaland. Nature 377, 301–308 (1995).

    Article  ADS  CAS  Google Scholar 

  65. Sleep, N. H., Richards, M. A. & Hager, B. H. On the onset of mantle plumes in the presence of preexisting convection. J. Geophys. Res. 93, 7672–7689 (1988).

    Article  ADS  Google Scholar 

  66. Davies, G. F. & Gurnis, M. Interaction of mantle dregs with convection: lateral heterogeneity at the core-mantle boundary. Geophys. Res. Lett. 13, 1517–1520 (1986).

    Article  ADS  Google Scholar 

  67. Sleep, N. H. Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. 95, 437–447 (1988).

    Article  ADS  Google Scholar 

  68. Goarant, F., Guyot, F., Peyronneau, J. & Poirier, J. P. High pressure and high-temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. J. Geophys. Res. 97, 4477–4487 (1992).

    Article  ADS  CAS  Google Scholar 

  69. Song, Y. & Ahrens, T. J. Pressure-temperature range of reactions between liquid iron in the outer core and mantle silicates. Geophys. Res. Lett. 21, 153–156 (1994).

    Article  ADS  CAS  Google Scholar 

  70. Ito, E., Morooka, K., Ujike, O. & Katsura, T. Reactions between molten iron and silicate melts at high pressure: Implications for the chemical evolution of Earth's core. J. Geophys. Res. 100, 5901–5910 (1995).

    Article  ADS  CAS  Google Scholar 

  71. Manga, M. & Jeanloz, R. Implications of a metal-bearing chemical boundary layer in D″ for mantle dynamics. Geophys. Res. Lett. 23, 3091–3094 (1996).

    Article  ADS  CAS  Google Scholar 

  72. Rigden, S. M., Ahrens, T. J. & Stolper, E. M. High-pressure equation of state of molten anorthite and diopside. J. Geophys. Res. 94, 9508–9522 (1989).

    Article  ADS  CAS  Google Scholar 

  73. McFarlane, E., Drake, M. J. & Rubie, D. C. Element partitioning between Mg-perovskite, magnesiowüstite and silicate melt at conditions of the Earth's mantle. Geochim. Cosmochim. Acta 58, 5161–5172 (1994).

    Article  ADS  CAS  Google Scholar 

  74. Ohtani, E., Kato, T. & Ito, E. Transition metal partitioning between lower mantle and core materials. Geophys. Res. Lett. 18, 85–88 (1991).

    Article  ADS  Google Scholar 

  75. Duffy, T. & Ahrens, T. J. in High-Pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 197–205 (Terra Scientific, Tokyo, (1992)).

    Google Scholar 

  76. Knittle, E. The solid/liquid partitioning of major and radiogenic elements at lower mantle pressures: Implications for the core-mantle boundary region.in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) (Am Geophys. Union, in the press).

  77. Holland, K. G. & Ahrens, T. J. Melting of (Mg, Fe)2SiO4at the core-mantle boundary of the Earth. Science 275, 1623–1625 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Crough, S. T. & Jurdy, D. M. Subducted lithosphere, hot spots and the geoid. Earth Planet. Sci. Lett. 48, 15–22 (1980).

    Article  ADS  Google Scholar 

  79. Karato, S. I., Zhang, S. & Wenk, H. R. Superplasticity in Earth's lower mantle: Evidence from seismic anisotropy and rock physics. Science 270, 458–461 (1995).

    Article  ADS  CAS  Google Scholar 

  80. Frost, H. J. & Ashby, M. F. Deformation Mechanism Maps (Pergamon, Oxford, (1982)).

    Google Scholar 

  81. Cohen, R. E. in High-Pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 425–431 (Terra Scientific, Tokyo, (1992)).

    Google Scholar 

  82. Stewart, D. N., Buse, F. H., Walker, K. A. & Gubbins, D. Geomagnetism, Earth rotation and the electrical conductivity of the lower mantle. Phys. Earth Planet. Inter. 92, 199–214 (1995).

    Article  ADS  Google Scholar 

  83. Larson, R. L. & Olson, P. Mantle plumes control magnetic reversal frequency. Earth Planet Sci. Lett. 107, 437–447 (1991).

    Article  ADS  Google Scholar 

  84. Marzocchi, W. & Mulargia, F. The periodicity of geomagnetic reversals. Phys. Earth Planet. Inter. 73, 222–228 (1992).

    Article  ADS  Google Scholar 

  85. Laj, C., Mazaud, A., Weeks, R., Fuller, M. & Herrero-Bervverra, E. Geomagnetic reversal paths. Nature 351, 447–450 (1991).

    Article  ADS  Google Scholar 

  86. Valet, J. P., Tucholka, P., Courtillot, V. & Meynadier, L. Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature 356, 400–407 (1992).

    Article  ADS  Google Scholar 

  87. Hoffman, K. Dipolar reversal states of the geomagnetic field and core-mantle dynamics. Nature 359, 789–794 (1992).

    Article  ADS  Google Scholar 

  88. Aurnou, J. M., Buttles, J. L., Neumann, G. A. & Olson, P. L. Electromagnetic core-mantle coupling and paleomagnetic reversal paths. Geophys. Res. Lett. 23, 2705–2708 (1996).

    Article  ADS  Google Scholar 

  89. Courtillot, V. & Valet, J. P. Secular variation of the Earth's magnetic field: From jerks to reversals. C. R. Acad. Sci. 320, 903–922 (1995).

    Google Scholar 

  90. Shankland, T. J., Peyronneau, J. & Poirier, J. P. Electrical conductivity of the Earth's lower mantle. Nature 366, 453–455 (1993).

    Article  ADS  Google Scholar 

  91. Li, X. & Jeanloz, R. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures. J. Geophys. Res. 95, 5067–5078 (1990).

    Article  ADS  Google Scholar 

  92. Tonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 151–174 (Oxford Univ. Press, New York, (1990)).

    Google Scholar 

  93. Birch, F. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 57, 227–286 (1952).

    Article  ADS  CAS  Google Scholar 

  94. Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Annu. Rev. Earth Planet. Sci. (in the press).

Download references

Acknowledgements

We thank C. Lithgow-Bertelloni, R. van der Hilst and S. Grand for providing access to their models and M. Kendall for providing comments on the manuscript. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorne Lay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lay, T., Williams, Q. & Garnero, E. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998). https://doi.org/10.1038/33083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/33083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing