Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo splenic CD11c cells downregulate CD4 T-cell response thereby decreasing systemic immunity to gene-modified tumour cell vaccine

Abstract

One of the factors influencing the efficacy of tumour cell vaccines is the site of immunization. We have shown previously that gene-modified vaccines delivered directly inside the spleen induced antigen cross-presentation by splenic antigen-presenting cells (not B cells). Here, we examined the interaction between splenic CD11c+ cells and antigen-specific CD4+ T cells. We used tumour cells expressing ovalbumin (OVA), a situation where CD4+ T-cell help is required for the generation of a cytotoxic T lymphocyte response. Using in vivo bioluminescence imaging of luciferase-expressing EL4-OVA cells, we could demonstrate that tumour cells were located exclusively inside the spleen following intrasplenic injection. We showed that after intrasplenic immunization with T/SA-OVA cells, splenic class I+ class II+ CD11c+ cells engulfed and presented in vivo the OVA class I-restricted peptide SIINFEKL. However, in vivo previously adoptively transferred 5,6-carboxy-succinimidyl-fluorescein-ester-labelled transgenic CD4+KJI-26+ cells specific for the class II OVA323–339 peptide underwent abortive proliferation in the spleen. These CD4+KJI-26+ cells were only transiently activated and produced IL-10 and IL-4 and not IFN-γ. It appears that splenic CD11c+ cells can downregulate splenic specific CD4+ T-cell response thereby leading to a decrease in antitumour systemic immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blankenstein Th, Qin Z . The role of IFN-γ in tumour transplantation immunity and inhibition of chemical carcinogenesis. Curr Opin Immunol 2003; 15: 148–154.

    Article  CAS  PubMed  Google Scholar 

  2. Lollini PL, Forni G . Antitumour vaccines: is it possible to prevent a tumour? Cancer Immunol Immunother 2002; 51: 409–416.

    Article  CAS  PubMed  Google Scholar 

  3. Kündig TM, Bachmann MF, DiPaolo C, Simard JJL, Battegay M, Lother H et al. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 1995; 268: 1343–1347.

    Article  PubMed  Google Scholar 

  4. Shoenberger SP, Jonges LE, Mooijaart RJD, Hartgers F, Toes REM, Kast WM et al. Efficient direct priming of tumour-specific cytotoxic T lymphocyte in vivo by an engineered APC. Cancer Res 1998; 58: 3094–3100.

    Google Scholar 

  5. Cayeux S, Richter G, Noffz G, Dörken B, Blankenstein Th . Influence of gene-modified (IL-7, IL-4, and B7) tumour cell vaccines on tumour antigen presentation. J Immunol 1997; 158: 2834–2841.

    CAS  PubMed  Google Scholar 

  6. Cayeux S, Richter G, Becker C, Pezzutto A, Dörken B, Blankenstein T . Direct and indirect T cell priming by dendritic cell vaccines. Eur J Immunol 1999; 29: 225–234.

    Article  CAS  PubMed  Google Scholar 

  7. Cayeux S, Qin Z, Dörken B, Blankenstein Th . Decreased generation of tumour immunity after intrasplenic immunisation. Eur J Immunol 2001; 31: 1392–1399.

    Article  CAS  PubMed  Google Scholar 

  8. Pulaski BA, Yeh KY, Shastri N, Maltby KM, Penney DP, Lord EM et al. Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex “representation” of exogenous antigen by tumour-infiltrating antigen-presenting cells. Proc Natl Acad Sci USA 1996; 93: 3669–3674.

    Article  CAS  PubMed  Google Scholar 

  9. Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow-derived cells in presenting MHC class I-restricted tumour antigens. Science 1994; 264: 961–965.

    Article  CAS  PubMed  Google Scholar 

  10. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T . B cells inhibit induction of T-cell dependent tumour immunity. Nat Med 1998; 4: 627–630.

    Article  CAS  PubMed  Google Scholar 

  11. Janeway CA, Ron J, Katz ME . The B cell is the initiating antigen-presenting cell in peripheral lymph nodes. J Immunol 1987; 138: 1051–1055.

    PubMed  Google Scholar 

  12. Steinman RM, Nussenzweig MC . Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002; 99: 351–358.

    Article  CAS  PubMed  Google Scholar 

  13. Ludewig B, Junt T, Hentgartner H, Zinkernagel RM . Dendritic cells in autoimmune diseases. Curr Opin Immunol 2001; 13: 657–662.

    Article  CAS  PubMed  Google Scholar 

  14. Heath RH, Carbone FR . Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64.

    Article  CAS  PubMed  Google Scholar 

  15. Lanzavecchia A, Sallusto F . Regulation of T cell immunity by dendritic cells. Cell 2001; 106: 263–266.

    Article  CAS  PubMed  Google Scholar 

  16. Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 1998; 188: 2163–2173.

    Article  CAS  PubMed  Google Scholar 

  17. den Haan JMM, Lehar SM, Bevan MJ . CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000; 192: 1685–1695.

    Article  CAS  PubMed  Google Scholar 

  18. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769–779.

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM . Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002; 196: 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  20. Hugues S, Mougneau E, Ferlin W, Jeske D, Hofman P, Homann D et al. Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic β cells. Immunity 2002; 16: 169–181.

    Article  CAS  Google Scholar 

  21. Mellman I, Steinman RM . Dendritic cells specialized and regulated antigen processing machines. Cell 2001; 106: 255–258.

    Article  CAS  PubMed  Google Scholar 

  22. Albert ML, Jegathesan M, Darnell RB . Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol 2001; 2: 1010–1017.

    Article  CAS  Google Scholar 

  23. Read S, Powrie F . CD4+ regulatory T cells. Curr Opin Immunol 2001; 13: 644–649.

    Article  CAS  Google Scholar 

  24. Akbari O, DeKruyff RH, Umetsu DT . Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2: 725–731.

    Article  CAS  PubMed  Google Scholar 

  25. Shevach EM . Regulatory T cells in autoimmunity. Annu Rev Immunol 2000; 18: 423–449.

    Article  CAS  PubMed  Google Scholar 

  26. Stephens LA, Mason D . CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rat, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J Immunol 2000; 165: 3105–3110.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  Google Scholar 

  28. Read S, Malmstrom V, Powrie F . Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302.

    Article  CAS  PubMed  Google Scholar 

  29. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A . CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 2001; 166: 3008–3018.

    Article  CAS  PubMed  Google Scholar 

  30. Negrin RS, Contag CH . In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 2006; 6: 484–490.

    Article  CAS  PubMed  Google Scholar 

  31. Cella M, Facchetti F, Lanzavecchia A, Colonna M . Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1: 305–310.

    Article  CAS  PubMed  Google Scholar 

  32. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N . Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–238.

    Article  CAS  PubMed  Google Scholar 

  33. Inaba K, Metlay JP, Crowley MT, Steinman RM . Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 1990; 172: 631–640.

    Article  CAS  PubMed  Google Scholar 

  34. Chodini C, Paglia P, Stoppacciaro A, Rodolfo M, Parenza M, Colombo MP . Dendritic cells infiltrating tumours co-transduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumour-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med 1999; 190: 125–133.

    Article  Google Scholar 

  35. Green EA, Wong FS, Eshima K, Mora C, Flavell RA . Neonatal tumour necrosis factor alpha promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8+ T cells. J Exp Med 2000; 191: 225–238.

    Article  CAS  PubMed  Google Scholar 

  36. Ingulli E, Mondino A, Khoruts A, Jenkins MK . In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J Exp Med 1997; 185: 2133–2141.

    Article  CAS  PubMed  Google Scholar 

  37. Marzo AL, Lake RA, Lo D, Sherman L, Mc William A, Nelson D et al. Tumour antigens are constitutively presented in the draining lymph nodes. J Immunol 1999; 162: 5838–5845.

    CAS  PubMed  Google Scholar 

  38. Bonnotte B, Favre N, Moutet M, Fromentin A, Solary E, Martin M et al. Role of tumour cell apoptosis in tumour antigen migration to the draining lymph nodes. J Immunol 2000; 164: 1995–2000.

    Article  CAS  PubMed  Google Scholar 

  39. Kurts C, Heath WR, Carbone FR, Allison J, Miller JFAP, Kosaka H . Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med 1996; 184: 923–930.

    Article  CAS  PubMed  Google Scholar 

  40. Bennett SRM, Carbone FR, Karamalis F, Miller JFAP, Heath WR . Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 1997; 186: 65–70.

    Article  CAS  PubMed  Google Scholar 

  41. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998; 393: 480–483.

    Article  CAS  PubMed  Google Scholar 

  42. Murphy KM, Heimburger AB, Loh L . Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990; 250: 1720–1727.

    Article  CAS  Google Scholar 

  43. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK . Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998; 281: 96–99.

    Article  CAS  Google Scholar 

  44. Haskins K, Kubo R, White J, Pigeon M, Kappler J, Marrack P . The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J Exp Med 1983; 157: 1149–1169.

    Article  CAS  Google Scholar 

  45. Porgador A, Yewdell JW, Deng Y, Bennick JR, Germain RN . Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity 1997; 6: 715–726.

    Article  CAS  Google Scholar 

  46. Robertson JM, Jensen PE, Evavold BD . DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323–339 epitope. J Immunol 2000; 164: 4706–4712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrea Katzer and Ute Nitschke for excellent technical assistance. This work was supported by Grant 2001.106.1 from the Wilhelm-Sander-Stiftung and by the Deutsche Forschungsgemeinschaft (Transregio-Sonderforschungsprogramm 36 Projekt B2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Cayeux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cayeux, S., Bukarica, B., Buschow, C. et al. In vivo splenic CD11c cells downregulate CD4 T-cell response thereby decreasing systemic immunity to gene-modified tumour cell vaccine. Gene Ther 14, 1481–1491 (2007). https://doi.org/10.1038/sj.gt.3303003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303003

Keywords

Search

Quick links