Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice

Abstract

Inhibition of tumour angiogenesis has been shown to restrict primary tumour growth and metastatic spread. This study examines the active induction of immune responses against tumour endothelial cells following immunization with recombinant Semliki Forest virus (rSFV) particles encoding murine vascular endothelial growth factor receptor-2 (VEGFR-2). This approach was tested in two murine tumour models, CT26 colon carcinoma and 4T1 metastasizing mammary carcinoma. Tumour growth and metastatic spread were shown to be significantly inhibited in mice that were prophylactically vaccinated or therapeutically treated with rSFV particles coding for VEGFR-2. Microvessel density analysis showed that immunization with rSFV led to significant inhibition of tumour angiogenesis. Therapeutic efficacy was found to be associated with the induction of an antibody response against VEGFR-2. Co-immunization of mice with rSFV particles encoding VEGFR-2 and interleukin (IL)-12 completely abrogated both the antibody response and the antitumour effect. However, co-immunization of mice with VEGFR-2 and IL-4 encoding particles was shown both to induce higher titres of anti-VEGFR-2 antibodies and lead to enhanced survival following tumour challenge when compared to mice vaccinated with VEGFR-2 particles alone. These findings indicate that active immunization with rSFV particles coding for VEGFR-2 can break immunological tolerance and could potentially be used as part of a novel treatment for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 6
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29: 15–18.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N, Kerbel RS . Angiogenesis as a therapeutic target. Nature 2005; 438: 967–974.

    Article  CAS  PubMed  Google Scholar 

  3. Augustin HG . Antiangiogenic tumour therapy: will it work? Trends Pharmacol Sci 1998; 19: 216–222.

    Article  CAS  PubMed  Google Scholar 

  4. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.

    Article  CAS  PubMed  Google Scholar 

  5. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  6. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  7. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B . Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 2001; 61: 6649–6655.

    CAS  PubMed  Google Scholar 

  8. Jain RK . Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987–989.

    Article  CAS  PubMed  Google Scholar 

  9. Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998; 394: 287–291.

    Article  CAS  PubMed  Google Scholar 

  10. Folkman J, D'Amore PA . Blood vessel formation: what is its molecular basis? Cell 1996; 87: 1153–1155.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara N . VEGF: an update on biological and therapeutic aspects. Curr Opin Biotechnol 2000; 11: 617–624.

    Article  CAS  PubMed  Google Scholar 

  12. Taraboletti G, Margosio B . Antiangiogenic and antivascular therapy for cancer. Curr Opin Pharmacol 2001; 1: 378–384.

    Article  CAS  PubMed  Google Scholar 

  13. Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 2001; 411: 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  14. Okaji Y, Tsuno NH, Saito S, Yoneyama S, Tanaka M, Nagawa H et al. Vaccines targeting tumour angiogenesis-a novel strategy for cancer immunotherapy. Eur J Surg Oncol 2006 (E-pub ahead of print).

  15. Ferrara N, Hillan KJ, Gerber HP, Novotny W . Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.

    Article  CAS  PubMed  Google Scholar 

  16. Liu JY, Wei YQ, Yang L, Zhao X, Tian L, Hou JM et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 2003; 102: 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  17. Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res 2005; 65: 4939–4946.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Wang MN, Li H, King KD, Bassi R, Sun H et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 2002; 195: 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E . Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 2003; 102: 964–971.

    Article  CAS  PubMed  Google Scholar 

  20. Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 2002; 8: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou H, Luo Y, Mizutani M, Mizutani N, Reisfeld RA, Xiang R . T cell-mediated suppression of angiogenesis results in tumor protective immunity. Blood 2005; 106: 2026–2032.

    Article  CAS  PubMed  Google Scholar 

  22. Smerdou C, Liljestrom P . Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 1999; 73: 1092–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P . Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (New York) 1993; 11: 916–920.

    CAS  Google Scholar 

  24. Berglund P, Fleeton MN, Smerdou C, Liljestrom P . Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 1999; 17: 497–507.

    Article  CAS  PubMed  Google Scholar 

  25. Fleeton MN, Sheahan BJ, Gould EA, Atkins GJ, Liljestrom P . Recombinant Semliki Forest virus particles encoding the prME or NS1 proteins of louping ill virus protect mice from lethal challenge. J Gen Virol 1999; 80: 1189–1198.

    Article  CAS  PubMed  Google Scholar 

  26. Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 2001; 183: 1395–1398.

    Article  CAS  PubMed  Google Scholar 

  27. Jerusalmi A, Morris-Downes MM, Sheahan BJ, Atkins GJ . Effect of intranasal administration of Semliki Forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol Ther 2003; 8: 886–894.

    Article  CAS  PubMed  Google Scholar 

  28. Chikkanna-Gowda CP, Sheahan BJ, Fleeton MN, Atkins GJ . Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Therapy 2005; 12: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez-Madoz JR, Prieto J, Smerdou C . Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 2005; 12: 153–163.

    Article  CAS  PubMed  Google Scholar 

  30. Colmenero P, Chen M, Castanos-Velez E, Liljestrom P, Jondal M . Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 2002; 98: 554–560.

    Article  CAS  PubMed  Google Scholar 

  31. Colmenero P, Liljestrom P, Jondal M . Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the P1A gene. Gene Therapy 1999; 6: 1728–1733.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy KM, Reiner SL . The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2: 933–944.

    Article  CAS  PubMed  Google Scholar 

  33. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89: 981–990.

    Article  CAS  PubMed  Google Scholar 

  34. Pan J, Heiser A, Marget M, Steinmann J, Kabelitz D . Enhanced antimetastatic effect of fetal liver kinase 1 extracellular domain and interferon-gamma fusion gene-modified dendritic cell vaccination. Gene Therapy 2005; 12: 742–750.

    Article  CAS  PubMed  Google Scholar 

  35. Feng KK, Zhao Y, Qiu H, Liu JX, Chen J . Combined therapy with flk1-based DNA vaccine and interleukin-12 results in enhanced antiangiogenic and antitumor effects. Cancer Lett 2005; 221: 41–47.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Hu D, Eling DJ, Robbins J, Kipps TJ . DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res 1998; 58: 1965–1971.

    CAS  PubMed  Google Scholar 

  37. Chen M, Hu KF, Rozell B, Orvell C, Morein B, Liljestrom P . Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 2002; 169: 3208–3216.

    Article  CAS  PubMed  Google Scholar 

  38. Knutson KL, Disis ML . Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54: 721–728.

    Article  CAS  PubMed  Google Scholar 

  39. Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 2000; 6: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  40. Smyth JW, Fleeton MN, Sheahan BJ, Atkins GJ . Treatment of rapidly growing K-BALB and CT26 mouse tumours using Semliki Forest virus and its derived vector. Gene Therapy 2005; 12: 147–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alex Whelan for assistance with histopathological studies, Dorothy Mooney for help with laboratory protocols, Maureen McCullough for assistance with haematology and Brian Cloak who assisted with photomicrography. The work was supported by the European Union Fifth Framework Programme and Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Atkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, J., Sheahan, B., Galbraith, S. et al. Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 14, 503–513 (2007). https://doi.org/10.1038/sj.gt.3302889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302889

Keywords

This article is cited by

Search

Quick links