Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Osteoarthritis gene therapy

Abstract

Osteoarthritis (OA) is the Western world's leading cause of disability. It is incurable, costly and responds poorly to treatment. This review discusses strategies for treating OA by gene therapy. As OA affects a limited number of weight-bearing joints and has no major extra-articular manifestations, it is well suited to local, intra-articular gene therapy. Possible intra-articular sites of gene transfer include the synovium and the cartilage. Most experimental progress has been made with gene transfer to synovium, a tissue amenable to genetic modification by a variety of vectors, using both in vivo and ex vivo protocols. The focus so far has been upon the transfer of genes whose products enhance synthesis of the cartilaginous matrix, or inhibit its breakdown, although there is certainly room for alternative targets. It is possible to build a convincing case implicating interleukin-1 (IL-1) as a key mediator of cartilage loss in OA, and the therapeutic effects of IL-1 receptor anatagonist (IL-1Ra) gene transfer have been confirmed in three different experimental models of OA. As transfer of IL-1Ra cDNA to human arthritic joints has already been accomplished safely, we argue that clinical studies of intra-articular IL-1Ra gene transfer in OA are indicated and should be funded. Of the available vector systems, recombinant adeno-associated virus may provide the best combination of safety with in vivo delivery using current technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Brooks PM . Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol 2002; 14: 573–577.

    Article  PubMed  Google Scholar 

  2. Praemer A, Furner S, Rice D . Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons: Rosemont, IL, 1992.

    Google Scholar 

  3. Elders MJ . The increasing impact of arthritis on public health. J Rheumatol Suppl 2000; 60: 6–8.

    CAS  PubMed  Google Scholar 

  4. Evans CH, Robbins PD . Potential treatment of osteoarthritis by gene therapy. Rheum Dis Clin North Am 1999; 25: 333–344.

    Article  CAS  PubMed  Google Scholar 

  5. Evans CH . Gene therapies for osteoarthritis. Curr Rheumatol Rep 2003, in press.

  6. Dieppe P et al. Osteoarthritis. Clin Evid 2002; 7: 1071–1090.

    Google Scholar 

  7. Hunziker EB . Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002; 10: 432–463.

    Article  CAS  PubMed  Google Scholar 

  8. Archer CW, Francis-West P . The chondrocyte. Int J Biochem Cell Biol 2003; 35: 401–404.

    Article  CAS  PubMed  Google Scholar 

  9. Evans CH . Catilage and synovium. In: Baratz ME, Watson AD, Imbriglia JE (eds). Orthopaedic Surgery. The Essentials. Thieme: New York, 1999, pp 33–46.

    Google Scholar 

  10. Felson D ed. Osteoarthritis joint pain. Novartis Found Symp 2003.

  11. Swagerty Jr DL, Hellinger D . Radiographic assessment of osteoarthritis. Am Fam Physician 2001; 64: 279–286.

    PubMed  Google Scholar 

  12. Ravaud P, Ayral X, Dougados M . Radiologic progression of hip and knee osteoarthritis. Osteoarthritis Cartilage 1999; 7: 222–229.

    Article  CAS  PubMed  Google Scholar 

  13. Gardner DL . The nature and causes of osteoarthrosis. BMJ (Clin Res Ed) 1983; 286: 418–424.

    Article  CAS  PubMed Central  Google Scholar 

  14. Hough Jr AJ, Webber RJ . Pathology of the meniscus. Clin Orthop 1990; 252: 32–40.

    Article  Google Scholar 

  15. Pelletier JP, Martel-Pelletier J, Abramson SB . Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001; 44: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  16. Evans CH et al. Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis Rheum 1984; 27: 200–207.

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy GM . Crystal-induced inflammation and cartilage degradation. Curr Rheumatol Rep 1999; 1: 101–106.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes JC, Martel-Pelletier J, Pelletier JP . The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002; 39: 237–246.

    CAS  PubMed  Google Scholar 

  19. Goldring MB . The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 1999; 40: 1–11.

    Article  CAS  PubMed  Google Scholar 

  20. Smith MD et al. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 1997; 24: 365–371.

    CAS  PubMed  Google Scholar 

  21. Poole AR . An introduction to the pathophysiology of osteoarthritis. Front Biosci 1999; 4: D662–670.

    Article  CAS  PubMed  Google Scholar 

  22. Sandell LJ, Aigner T . Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001; 3: 107–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blanco FJ et al. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 1998; 41: 284–289.

    Article  CAS  PubMed  Google Scholar 

  24. Aigner T et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001; 44: 1304–1312.

    Article  CAS  PubMed  Google Scholar 

  25. Aigner T, Kim HA . Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002; 46: 1986–1996.

    Article  CAS  PubMed  Google Scholar 

  26. Aigner T et al. Roles of chondrocytes in the pathogenesis of osteoarthritis. Curr Opin Rheumatol 2002; 14: 578–584.

    Article  CAS  PubMed  Google Scholar 

  27. Aigner T et al. Suppression of cartilage matrix gene expression in upper zone chondrocytes of osteoarthritic cartilage. Arthritis Rheum 1997; 40: 562–569.

    Article  CAS  PubMed  Google Scholar 

  28. Adams ME, Brandt KD . Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 1991; 18: 428–435.

    CAS  PubMed  Google Scholar 

  29. Poole AR et al. Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann Rheum Dis 2002; 61 (Suppl 2): ii78–ii81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aigner T et al. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest 1993; 91: 829–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith RL . Degradative enzymes in osteoarthritis. Front Biosci 1999; 4: D704–12.

    Article  CAS  PubMed  Google Scholar 

  32. Brinckerhoff CE, Matrisian LM . Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 2002; 3: 207–214.

    Article  CAS  PubMed  Google Scholar 

  33. Blobel CP . Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm Res 2002; 51: 83–84.

    Article  CAS  PubMed  Google Scholar 

  34. Nagase H, Kashiwagi M . Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5: 94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans CH, Watkins SC, Stefanovic-Racic M . Nitric oxide and cartilage metabolism. Methods Enzymol 1996; 269: 75–88.

    Article  CAS  PubMed  Google Scholar 

  36. Tiku ML, Gupta S, Deshmukh DR . Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radic Res 1999; 30: 395–405.

    Article  CAS  PubMed  Google Scholar 

  37. Clancy R et al. Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence. Osteoarthritis Cartilage 2001; 9: 294–299.

    Article  CAS  PubMed  Google Scholar 

  38. Abramson SB . The role of COX-2 produced by cartilage in arthritis. Osteoarthritis Cartilage 1999; 7: 380–381.

    Article  CAS  PubMed  Google Scholar 

  39. Martel-Pelletier J . Pathophysiology of osteoarthritis. Osteoarthritis Cartilage 1998; 6: 374–376.

    Article  CAS  PubMed  Google Scholar 

  40. Koshy PJ et al. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Ann Rheum Dis 2002; 61: 704–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olee T et al. IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 1999; 162: 1096–1100.

    CAS  PubMed  Google Scholar 

  42. Yuan GH et al. The role of C-C chemokines and their receptors in osteoarthritis. Arthritis Rheum 2001; 44: 1056–1070.

    Article  CAS  PubMed  Google Scholar 

  43. Pulsatelli L et al. Chemokine production by human chondrocytes. J Rheumatol 1999; 26: 1992–2001.

    CAS  PubMed  Google Scholar 

  44. Homandberg GA, Wen C, Hui F . Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage 1998; 6: 231–244.

    Article  CAS  PubMed  Google Scholar 

  45. Cheung HS . The role of crystals in articular tissue degeneration. Curr Rheumatol Rep 1999; 1: 128–131.

    Article  CAS  PubMed  Google Scholar 

  46. Saudek DM, Kay J . Advanced glycation endproducts and osteoarthritis. Curr Rheumatol Rep 2003; 5: 33–40.

    Article  PubMed  Google Scholar 

  47. Grodzinsky AJ et al. Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2000; 2: 691–713.

    Article  CAS  PubMed  Google Scholar 

  48. Deschner J et al. Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care 2003; 6: 289–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tyler JA . Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J 1989; 260: 543–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loeser RF, Shanker G . Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 2000; 43: 1552–1559.

    Article  CAS  PubMed  Google Scholar 

  51. Fortier LA, Nixon AJ, Lust G . Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res 2002; 63: 301–305.

    Article  CAS  PubMed  Google Scholar 

  52. Martel-Pelletier J et al. IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 1998; 47: 90–100.

    Article  CAS  PubMed  Google Scholar 

  53. Loeser RF et al. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 2000; 43: 2110–2120.

    Article  CAS  PubMed  Google Scholar 

  54. Studer RK et al. Nitric oxide inhibits chondrocyte response to IGF-I: inhibition of IGF-IRbeta tyrosine phosphorylation. Am J Physiol Cell Physiol 2000; 279: C961–C969.

    Article  CAS  PubMed  Google Scholar 

  55. Lafeber FP et al. Transforming growth factor-beta predominantly stimulates phenotypically changed chondrocytes in osteoarthritic human cartilage. J Rheumatol 1997; 24: 536–542.

    CAS  PubMed  Google Scholar 

  56. Palmer G et al. Development of gene-based therapies for cartilage repair. Crit Rev Eukaryot Gene Expr 2002; 12: 259–273.

    Article  CAS  PubMed  Google Scholar 

  57. Kafienah W et al. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach. Arthritis Rheum 2003; 48: 709–718.

    Article  CAS  PubMed  Google Scholar 

  58. Brandt KD . Animal models of osteoarthritis. Biorheology 2002; 39: 221–235.

    CAS  PubMed  Google Scholar 

  59. van den Berg WB . Lessons from animal models of osteoarthritis. Curr Opin Rheumatol 2001; 13: 452–456.

    Article  CAS  PubMed  Google Scholar 

  60. McDevitt C, Gilbertson E, Muir H . An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br 1977; 59: 24–35.

    Article  CAS  PubMed  Google Scholar 

  61. Hochberg MC et al. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum 1995; 38: 1541–1546.

    Article  CAS  PubMed  Google Scholar 

  62. Hochberg MC et al. Guidelines for the medical management of osteoarthritis. Part I. Osteoarthritis of the hip. American College of Rheumatology. Arthritis Rheum 1995; 38: 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  63. Chard J, Dieppe P . Update: treatment of osteoarthritis. Arthritis Rheum 2002; 47: 686–690.

    Article  PubMed  Google Scholar 

  64. Garrett Jr W . Evaluation and treatment of the arthritic knee. J Bone Joint Surg Am 2003; 85-A: 156–157.

    Article  Google Scholar 

  65. Bradley JD . Joint irrigation as treatment for osteoarthritis. Curr Rheumatol Rep 2003; 5: 20–26.

    Article  PubMed  Google Scholar 

  66. Moseley JB et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002; 347: 81–88.

    Article  PubMed  Google Scholar 

  67. Buckwalter JA, Lohmander S . Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 1994; 76: 1405–1418.

    Article  CAS  PubMed  Google Scholar 

  68. Hungerford DS, Jones LC . Glucosamine and chondroitin sulfate are effective in the management of osteoarthritis. J Arthroplasty 2003; 18 (3 Suppl 1): 5–9.

    Article  PubMed  Google Scholar 

  69. Close DR . Matrix metalloproteinase inhibitors in rheumatic diseases. Ann Rheum Dis 2001; 60 (Suppl 3): iii62–iii67.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Darlington LG, Stone TW . Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr 2001; 85: 251–269.

    Article  CAS  PubMed  Google Scholar 

  71. Goldring MB . Anticytokine therapy for osteoarthritis. Expert Opin Biol Ther 2001; 1: 817–829.

    Article  CAS  PubMed  Google Scholar 

  72. MacGregor AJ et al. The genetic contribution to radiographic hip osteoarthritis in women: results of a classic twin study. Arthritis Rheum 2000; 43: 2410–2416.

    Article  CAS  PubMed  Google Scholar 

  73. Wordsworth P . Genes and arthritis. Br Med Bull 1995; 51: 249–266.

    Article  CAS  PubMed  Google Scholar 

  74. Ala-Kokko L et al. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc Natl Acad Sci USA 1990; 87: 6565–6568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bandara G et al. Gene transfer to synoviocytes: prospects for gene treatment of arthritis. DNA Cell Biol 1992; 11: 227–231.

    Article  CAS  PubMed  Google Scholar 

  76. Robbins PD, Evans CH, Chernajovsky Y . Gene therapy for arthritis. Gene Therapy 2003; 10: 902–911.

    Article  CAS  PubMed  Google Scholar 

  77. Gouze E et al. Gene therapy for rheumatoid arthritis. Curr Rheumatol Rep 2001; 3: 79–85.

    Article  CAS  PubMed  Google Scholar 

  78. Herndon JH, Robbins PD, Evans CH . Arthritis: is the cure in your genes? J Bone Joint Surg Am 1999; 81: 152–157.

    Article  CAS  PubMed  Google Scholar 

  79. Evans CH et al. Gene therapy for rheumatic diseases. Arthritis Rheum 1999; 42: 1–16.

    Article  CAS  PubMed  Google Scholar 

  80. Evans CH et al. Using gene therapy to protect and restore cartilage. Clin Orthop 2000 (Suppl 379): S214–S219.

    Article  Google Scholar 

  81. Ghivizzani SC et al. Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discov Today 2001; 6: 259–267.

    Article  CAS  PubMed  Google Scholar 

  82. Oligino TJ et al. Vector systems for gene transfer to joints. Clin Orthop 2000(Suppl 379): S17–30.

    Article  Google Scholar 

  83. Nita I et al. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthritis Rheum 1996; 39: 820–828.

    Article  CAS  PubMed  Google Scholar 

  84. Bandara G et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci USA 1993; 90: 10764–10768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gouze E et al. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 2002; 5: 397–404.

    Article  CAS  PubMed  Google Scholar 

  86. Mi Z et al. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum 2000; 43: 2563–2570.

    Article  CAS  PubMed  Google Scholar 

  87. Mi Z et al. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res Ther 2003; 5: R132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bakker AC et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage 2001; 9: 128–136.

    Article  CAS  PubMed  Google Scholar 

  89. Gelse K et al. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer. Arthritis Rheum 2001; 44: 1943–1953.

    Article  CAS  PubMed  Google Scholar 

  90. Arend WP, Evans CH . Interleukin-1 receptor antagonist. In: Thomson AW, Lotz MT (eds). The Cytokine Handbook. Academic Press: London, 2003, pp 669–708.

    Chapter  Google Scholar 

  91. Nixon AJ et al. Gene mediated restoration of cartilage matrix by combination insulin-like growth factor-1/interleukin-1 receptor antagonist therapy. Gene Therapy 2003, in press.

  92. Gouze JN et al. Adenovirus-mediated gene transfer to glutamine:fructose-6-phosphate amidotransferase antagonizes the effects of interleukin-1beta on rat chondrocytes. Osteoarthritis Cartilage 2003, in press.

  93. Palmer GD et al. Gene transfer to articular chondrocytes with recombinant adenovirus. Methods Mol Biol 2003; 215: 235–246.

    CAS  PubMed  Google Scholar 

  94. Samuel RE et al. Delivery of plasmid DNA to articular chondrocytes via novel collagen–glycosaminoglycan matrices. Hum Gene Ther 2002; 13: 791–802.

    Article  CAS  PubMed  Google Scholar 

  95. Kang R et al. Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 1997; 5: 139–143.

    Article  CAS  PubMed  Google Scholar 

  96. Stove J et al. Lipofection of rabbit chondrocytes and long lasting expression of a lacZ reporter system in alginate beads. Osteoarthritis Cartilage 2002; 10: 212–217.

    Article  CAS  PubMed  Google Scholar 

  97. Madry H, Zurakowski D, Trippel SB . Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Therapy 2001; 8: 1443–1449.

    Article  CAS  PubMed  Google Scholar 

  98. Shuler FD et al. Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes. J Orthop Res 2000; 18: 585–592.

    Article  CAS  PubMed  Google Scholar 

  99. Brower-Toland BD et al. Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther 2001; 12: 117–129.

    Article  CAS  PubMed  Google Scholar 

  100. Smith P et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 2000; 43: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  101. Ikeda T et al. Adenovirus mediated gene delivery to the joints of guinea pigs. J Rheumatol 1998; 25: 1666–1673.

    CAS  PubMed  Google Scholar 

  102. Nishida K et al. Potential applications of gene therapy to the treatment of intervertebral disc disorders. Clin Orthop 2000(Suppl 379): 3795: S234–41.

  103. Baragi VM et al. Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 1997; 5: 275–282.

    Article  CAS  PubMed  Google Scholar 

  104. Brittberg M et al. Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop 2001(391 Suppl): S337–S348.

    Article  Google Scholar 

  105. Doherty PJ et al. Adhesion of transplanted chondrocytes onto cartilage in vitro and in vivo. J Rheumatol 2000; 27: 1725–1731.

    CAS  PubMed  Google Scholar 

  106. Baragi VM et al. Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation. J Clin Invest 1995; 96: 2454–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dinarello CA . Interleukin-1 family. In: Thomson AW, Lotz MT (eds). The Cytokine Handbook. Academic Press: London, 2003, pp 643–668.

    Chapter  Google Scholar 

  108. Pelletier JP et al. Coordinate synthesis of stromelysin, interleukin-1, and oncogene proteins in experimental osteoarthritis – an immunohistochemical study. Am J Pathol 1993; 142: 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Caron JP et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum 1996; 39: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  110. Attur MG et al. Functional genomic analysis of type II IL-1beta decoy receptor: potential for gene therapy in human arthritis and inflammation. J Immunol 2002; 168: 2001–2010.

    Article  CAS  PubMed  Google Scholar 

  111. Attur MG et al. Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type II IL-1 decoy receptor. Potential for pharmacological intervention. J Biol Chem 2000; 275: 40307–40315.

    Article  CAS  PubMed  Google Scholar 

  112. Attur MG et al. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians 1998; 110: 65–72.

    CAS  PubMed  Google Scholar 

  113. Martel-Pelletier J et al. The interleukin-1 receptor in normal and osteoarthritic human articular chondrocytes. Identification as the type I receptor and analysis of binding kinetics and biologic function. Arthritis Rheum 1992; 35: 530–540.

    Article  CAS  PubMed  Google Scholar 

  114. Melchiorri C et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum 1998; 41: 2165–2174.

    Article  CAS  PubMed  Google Scholar 

  115. Towle CA et al. Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/paracrine role in pathogenesis. Osteoarthritis Cartilage 1997; 5: 293–300.

    Article  CAS  PubMed  Google Scholar 

  116. Eger W et al. Human knee and ankle cartilage explants: catabolic differences. J Orthop Res 2002; 20: 526–534.

    Article  CAS  PubMed  Google Scholar 

  117. Cole AA, Kuettner KE . Molecular basis for differences between human joints. Cell Mol Life Sci 2002; 59: 19–26.

    Article  CAS  PubMed  Google Scholar 

  118. Kary S, Burmester GR . Anakinra: the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int J Clin Pract 2003; 57: 231–234.

    CAS  PubMed  Google Scholar 

  119. Bresnihan B . The prospect of treating rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. BioDrugs 2001; 15: 87–97.

    Article  CAS  PubMed  Google Scholar 

  120. Fleischmann RM . Addressing the safety of anakinra in patients with rheumatoid arthritis. Rheumatology (Oxford) 2003; 42 (Suppl 2): ii29–ii35.

    CAS  Google Scholar 

  121. Bresnihan B . The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 2001; 30 (5 Suppl 2): 17–20.

    Article  CAS  PubMed  Google Scholar 

  122. Bendele A et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum 1999; 42: 498–506.

    Article  CAS  PubMed  Google Scholar 

  123. Evans CH, Robbins PD . The interleukin-1 receptor antagonist and its delivery by gene transfer. Receptor 1994; 4: 9–15.

    CAS  PubMed  Google Scholar 

  124. Pelletier JP et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 1997; 40: 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  125. Frisbie DD et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Therapy 2002; 9: 12–20.

    Article  CAS  PubMed  Google Scholar 

  126. Fernandes J et al. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol 1999; 154: 1159–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Otani K et al. Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J Immunol 1996; 156: 3558–3562.

    CAS  PubMed  Google Scholar 

  128. Evans CH et al. Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther 1996; 7: 1261–1280.

    Article  CAS  PubMed  Google Scholar 

  129. Boggs SS et al. Prolonged systemic expression of human IL-1 receptor antagonist (hIL-1ra) in mice reconstituted with hematopoietic cells transduced with a retrovirus carrying the hIL-1ra cDNA. Gene Therapy 1995; 2: 632–638.

    CAS  PubMed  Google Scholar 

  130. Evans CH et al. Clinical trials in the gene therapy of arthritis. Clin Orthop 2000(Suppl 379): S300–S307.

    Article  Google Scholar 

  131. Gouze E et al. Lentiviral-mediated gene delivery to synovium: potent intra-articular expression with amplification by inflammation. Mol Ther 2003; 7: 460–466.

    Article  CAS  PubMed  Google Scholar 

  132. Goater J et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol 2000; 27: 983–989.

    CAS  PubMed  Google Scholar 

  133. Pan RY et al. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum 2000; 43: 289–297.

    Article  CAS  PubMed  Google Scholar 

  134. Kang R et al. The Marshall R. Urist Young Investigator Award. Orthopaedic applications of gene therapy. From concept to clinic. Clin Orthop 2000: 324–337.

Download references

Acknowledgements

The design of the suggested human protocol was funded by NIH Grant Number R21-AR049606.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, C., Gouze, J., Gouze, E. et al. Osteoarthritis gene therapy. Gene Ther 11, 379–389 (2004). https://doi.org/10.1038/sj.gt.3302196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302196

Keywords

This article is cited by

Search

Quick links