Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential

Abstract

Listeriolysin O (LLO), a sulfhydryl-activated pore-forming protein from Listeria monocytogenes, was tested and utilized for promoting plasmid DNA (pDNA) delivery into the cytosol of cells in culture. To render pDNA-complexing capability to LLO, the unique cysteine 484 of LLO was conjugated to polycationic peptide protamine (PN) at a 1:1 molar ratio through a reversible, endosome-labile disulfide bond. The sulfhydryl-oxidized LLO construct, LLO-s-s-PN, completely lacked its pore-forming activity, yet regained its original activity upon reduction. The enhanced cytosolic delivery using this construct therefore relies on the requisite reduction of the disulfide bond in LLO-s-s-PN by endogenous cellular reducing capacity. Condensed PN/pDNA complexes incorporating LLO-s-s-PN were tested for their enhanced gene delivery capability monitoring reporter gene expression in HEK293, RAW264.7, P388D1 cell lines and bone-marrow-derived macrophages in the presence of serum. Dramatic enhancement was observed for all tested complexes with varying weight ratios. The effect was most prominent at 0.64–0.80 (w/w) of PN/pDNA upon replacing 1–4% of PN with LLO-s-s-PN, resulting in approximately three orders of magnitude higher luciferase expression compared to PN/pDNA without apparent toxicity. These results demonstrate that incorporation of endosomolytic LLO into pDNA delivery systems in a controlled fashion is a promising approach of enhancing delivery into the cytosol of target cells in gene delivery strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wagner E et al. Transferrin–polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 1990; 87: 3410–3414.

    Article  CAS  Google Scholar 

  2. Wu GY, Wu CH . Receptor-mediated gene delivery and expression in vivo. J Biol Chem 1988; 263: 14 621–14 624.

    Google Scholar 

  3. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  Google Scholar 

  4. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996; 271: 8481–8487.

    Article  CAS  Google Scholar 

  5. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry (Mosc) 1996; 35: 1027–1036.

    Article  CAS  Google Scholar 

  6. Zauner W, Wagner E, Ogris M . Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev 1998; 30: 97–113.

    Article  CAS  Google Scholar 

  7. Wagner E . Application of membrane-active peptides for nonviral gene delivery. Adv Drug Deliv Rev 1999; 38: 279–289.

    Article  CAS  Google Scholar 

  8. Wagner E et al. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferring–polylysine–DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 1992; 89: 7934–7938.

    Article  CAS  Google Scholar 

  9. Wagner E et al. Coupling of adenovirus to transferring–polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA 1992; 89: 6099–6103.

    Article  CAS  Google Scholar 

  10. Wyman TB et al. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997; 36: 3008–3017.

    Article  CAS  Google Scholar 

  11. Legendre JY, Szoka Jr. FC . Cyclic amphipathic peptide–DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc Natl Acad Sci USA 1993; 90: 893–897.

    Article  CAS  Google Scholar 

  12. Nishikawa M et al. Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 2000; 7: 548–555.

    Article  CAS  Google Scholar 

  13. Finlay BB, Cossart P . Exploitation of mammalian host cell functions by bacterial pathogens. Science 1997; 276: 718–725.

    Article  CAS  Google Scholar 

  14. Dietrich G et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol 1998; 16: 181–185.

    Article  CAS  Google Scholar 

  15. Sizemore DR, Branstrom AA, Sadoff JC . Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 1995; 270: 299–302.

    Article  CAS  Google Scholar 

  16. Darji A et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997; 91: 765–775.

    Article  CAS  Google Scholar 

  17. Smith AE . Viral vectors in gene therapy. Annu Rev Microbiol 1995; 49: 807–838.

    Article  CAS  Google Scholar 

  18. Jacobs T, Darji A, Weiss S, Chakraborty T . In: Alouf JE, Freer JH (eds), The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press: London, 1999, pp 511–521.

    Google Scholar 

  19. Portnoy DA, Jones S . The cell biology of Listeria monocytogenes infection (escape from a vacuole). Ann N Y Acad Sci 1994; 730: 15–25.

    Article  CAS  Google Scholar 

  20. Gottschalk S, Tweten RK, Smith LC, Woo SL . Efficient gene delivery and expression in mammalian cells using DNA coupled with perfringolysin O. Gene Ther 1995; 2: 498–503.

    CAS  PubMed  Google Scholar 

  21. Alouf JE, Geoffroy C . In: Alouf JE, Freer JH (eds), Sourcebook of Bacterial Protein Toxins. Academic Press: London, 1991, pp 147–186.

    Google Scholar 

  22. Cowell JL, Grushoff-Kosyk PS, Bernheimer AW . Purification of cereolysin and the electrophoretic separation of the active (reduced) and inactive (oxidized) forms of the purified toxin. Infect Immun 1976; 14: 144–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwamoto M, Ohno-Iwashita Y, Ando S . Role of the essential thiol group in the thiol-activated cytolysin from Clostridium perfringens. Eur J Biochem 1987; 167: 425–430.

    Article  CAS  Google Scholar 

  24. Lee KD, Oh YK, Portnoy DA, Swanson JA . Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J Biol Chem 1996; 271: 7249–7252.

    Article  CAS  Google Scholar 

  25. Mandal M, Lee KD, . Listeriolysin O-liposome-mediated cytosotic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity and tumor protectionListeria monocytogenes. Biochim Biophys Acta 2002; 1563: 7–17.

    Article  CAS  Google Scholar 

  26. Mandal M, Lee KD . Listeriolysin O-liposome-mediated cytosotic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity and tumor protection. Biochim Biophys Acta 2002; 1563: 7–17.

    Article  CAS  Google Scholar 

  27. Ando T, Yamasaki M, Suzuki K . Protamines. Isolation, characterization, structure and function. Mol Biol Biochem Biophys 1973; 12: 1–114.

    Article  CAS  Google Scholar 

  28. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther 1997; 4: 961–968.

    Article  CAS  Google Scholar 

  29. Yang JP, Huang L . Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 1997; 4: 950–960.

    Article  CAS  Google Scholar 

  30. Perales JC et al. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem 1997; 272: 7398–7407.

    Article  CAS  Google Scholar 

  31. Sekiya K, Danbara H, Futaesaku Y . [Mechanism of pore formation on erythrocyte membrane by streptolysin-O]. Kansenshogaku Zasshi 1993; 67: 736–740.

    Article  CAS  Google Scholar 

  32. Beauregard KE, Lee KD, Collier RJ, Swanson JA . pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 1997; 186: 1159–1163.

    Article  CAS  Google Scholar 

  33. Portnoy DA, Tweten RK, Kehoe M, Bielecki J . Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 1992; 60: 2710–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Geoffroy C, Gaillard JL, Alouf JE, Berche P . Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 1987; 55: 1641–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Feener EP, Shen WC, Ryser HJ . Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. J Biol Chem 1990; 265: 18 780–18 785.

    Google Scholar 

  36. Shen WC, Ryser HJ, LaManna L . Disulfide spacer between methotrexate and poly(D-lysine). A probe for exploring the reductive process in endocytosis. J Biol Chem 1985; 260: 10 905–10 908.

    Google Scholar 

  37. Papini E, Rappuoli R, Murgia M, Montecucco C . Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 1993; 268: 1567–1574.

    CAS  PubMed  Google Scholar 

  38. Ryser HJ, Mandel R, Ghani F . Cell surface sulfhydryls are required for the cytotoxicity of diphtheria toxin but not of ricin in Chinese hamster ovary cells. J Biol Chem 1991; 266: 18 439–18 442.

    Google Scholar 

  39. Mandel R et al. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci USA 1993; 90: 4112–4116.

    Article  CAS  Google Scholar 

  40. Maric M et al. Defective antigen processing in GILT-free mice. Science 2001; 294: 1361–1365.

    Article  CAS  Google Scholar 

  41. Phan UT, Arunachalam B, Cresswell P . Gamma-interferon-inducible lysosomal thiol reductase (GILT). Maturation, activity, and mechanism of action. J Biol Chem 2000; 275: 25 907–25 914.

    Article  Google Scholar 

  42. Luster AD, Weinshank RL, Feinman R, Ravetch JV . Molecular and biochemical characterization of a novel gamma-interferon-inducible protein. J Biol Chem 1988; 263: 12 036–12 043.

    Google Scholar 

  43. Gainey D, Short S, McCoy KL . Intracellular location of cysteine transport activity correlates with productive processing of antigen disulfide. J Cell Physiol 1996; 168: 248–254.

    Article  CAS  Google Scholar 

  44. Merkel BJ, Mandel R, Ryser HJ, McCoy KL . Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds. J Immunol 1995; 154: 128–136.

    CAS  PubMed  Google Scholar 

  45. Zychlinsky A, Prevost MC, Sansonetti PJ . Shigella flexneri induces apoptosis in infected macrophages. Nature 1992; 358: 167–169.

    Article  CAS  Google Scholar 

  46. Tsang AW, Oestergaard K, Myers JT, Swanson JA . Altered membrane trafficking in activated bone marrow-derived macrophages. J Leukoc Biol 2000; 68: 487–494.

    CAS  PubMed  Google Scholar 

  47. Gedde MM, Higgins DE, Tilney LG, Portnoy DA . Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 2000; 68: 999–1003.

    Article  CAS  Google Scholar 

  48. Glomski IJ et al. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 2002; 156: 1029–1038.

    Article  CAS  Google Scholar 

  49. Connor J, Schroit AJ . Transbilayer movement of phosphatidylserine in erythrocytes: inhibition of transport and preferential labeling of a 31000-dalton protein by sulfhydryl reactive reagents. Biochemistry 1988; 27: 848–851.

    Article  CAS  Google Scholar 

  50. Gusse M et al. Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 1986; 884: 124–134.

    Article  CAS  Google Scholar 

  51. Portnoy DA, Jacks PS, Hinrichs DJ . Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 1988; 167: 1459–1471.

    Article  CAS  Google Scholar 

  52. Racoosin EL, Swanson JA . Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol 1993; 121: 1011–1020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Daniel Portnoy (UC Berkeley) for the LLO-his plasmid and Dr Gary Nabel (National Institutes of Health) for the GFP-luciferase plasmid. We thank Dr Joel Swanson (University of Michigan) and members of the Lee and Amidon Labs for helpful discussions. G Saito was supported by a fund from Sankyo Co. Ltd (Tokyo, Japan). This work was supported by NIH grants R29AI42084 and R01AI47173, and Rackham Fund and Vahlteich Research Fund at the University of Michigan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, G., Amidon, G. & Lee, KD. Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential. Gene Ther 10, 72–83 (2003). https://doi.org/10.1038/sj.gt.3301859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301859

Keywords

This article is cited by

Search

Quick links