Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuronal inhibition by the peptide FMRFamide involves opening of S K+ channels

Abstract

Neurotransmitters modulate the activity of ion channels through a variety of second messengers, including cyclic AMP1–4, cyclic GMP5,6 and the products of phosphatidylinositol breakdown7–9. Little is known about how different transmitters acting through different second-messenger systems interact within a cell to regulate single ion channels. We here describe the reciprocal actions of serotonin and the molluscan neuropeptide, FMRFamide10, on individual K+ channels in Aplysia sensory neurons. In these cells, serotonin causes prolonged all-or-none closure of a class of background conductance K+ channels (the S channels)11 through cAMP-dependent protein phosphorylation12–14. Using single-channel recording, we have found that FMRFamide produces two actions on the S channels; it increases the probablity of opening of the S channels via a cAMP-independent second-messenger system and it reverses the closures of S channels produced by serotonin or cAMP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Siegelbaum, S. A. & Tsien, R. W. Trends Neurosci. 6, 307–313 (1983).

    Article  CAS  Google Scholar 

  2. Kennedy, M. A. Rev. Neurosci. 6, 493–525 (1983).

    Article  CAS  Google Scholar 

  3. Nestler, E. J. & Greengard, P. Nature 305, 583–588 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Levitan, I. J. Membrane Biol. 87, 177–190 (1985).

    Article  CAS  Google Scholar 

  5. Dascal, N., Landau, E. M. & Lass, Y. J. Physiol., Lond. 352, 551–574 (1984).

    Article  CAS  Google Scholar 

  6. Paupardin-Tritsch, D., Hammond, C. & Gerschenfeld, H. M. Soc. Neurosci. Abstr. 11, 466 (1985).

    Google Scholar 

  7. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Oron, Y., Dascal, N., Nadler, E. & Lupu, M. Nature 313, 141–143 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Price, D. A. & Greenberg, M. J. Science 197, 670–671 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 4132–417 (1982).

    Article  Google Scholar 

  12. Castellucci, V. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7492–7496 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Castellucci, V. F., Nairn, A. C., Greengard, P., Schwartz, J. H. & Kandel, E. R. J. Neurosci. 2, 1673–1681 (1982).

    Article  CAS  Google Scholar 

  14. Shuster, M. J., Camardo, J. S., Siegelbaum, S. A. & Kandel, E. R. Nature 313, 392–395 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Klein, M. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 77, 6912–6916 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Abrams, T. W., Castellucci, V. F., Camardo, J. S., Kandel, E. R. & Lloyd, P. E. Proc. natn. Acad. Sci. U.S.A. 81, 7956–7960 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Belardetti, F., Abrams, T. W., Castellucci, V. F., Kandel, E. R. & Siegelbaum, S. A. Soc. Neurosci. Abstr. 12, 766 (1986).

    Google Scholar 

  18. Ocorr, K. A. & Byrne, J. H. Neurosci. Lett. 55, 113–118 (1985).

    Article  CAS  Google Scholar 

  19. Erxleben, C., Brezina, V. & Eckert, R. Soc. Neurosci. Abstr. 11, 170 (1985).

    Google Scholar 

  20. Brezina, V., Erxleben, C. & Eckert, R. Biophys. J. 47, 435a (1985).

    Google Scholar 

  21. Kretz, R., Shapiro, E. & Kandel, E. R. J. Neurophysiol. 55, 113–130 (1986).

    Article  CAS  Google Scholar 

  22. Ocorr, K. A., Tabata, M. & Byrne, J. H. Soc. Neurosci. Abstr. 11, 481 (1985).

    Google Scholar 

  23. Walters, E. T., Byrne, J. H., Carew, T. J. & Kandel, E. R. J. Neurophysiol. 50, 1543–1559 (1983).

    Article  CAS  Google Scholar 

  24. Rayport, S. & Schacher, S. J. Neurosci. 6, 759–763 (1985).

    Article  Google Scholar 

  25. Hodgkin, A. L. & Katz, B. J. Physiol., Lond. 208, 37–77 (1949).

    Article  Google Scholar 

  26. Patlak, J. & Horn, R. J. gen. Physiol. 79, 333–351 (1982).

    Article  CAS  Google Scholar 

  27. Brezina, V., Eckert, R. & Erxleben, C. J. Physiol., Lond. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belardetti, F., Kandel, E. & Siegelbaum, S. Neuronal inhibition by the peptide FMRFamide involves opening of S K+ channels. Nature 325, 153–156 (1987). https://doi.org/10.1038/325153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing