Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells

Abstract

The slow inward Ca2+ current, ICa, is fundamental in the initiation of cardiac contraction and neurohormonal regulation of cardiac function1. It is increased by β-adrenergic agonists, which stimulate synthesis of cyclic AMP (cAMP) and cAMP-dependent phosphorylation2–4. The neurotransmitter acetylcholine reduces ICa5–7 by an unknown mechanism8,9. There is strong evidence that acetylcholine reduces ICa by decreasing adenylate cyclase activity7, but cGMP has also been implicated as ACh stimulates cGMP accumulation and activates cGMP-dependent protein kinase10–13. Application of cGMP decreases contractile force14, decreases 45Ca flux15, shortens the duration of action potentials16 and inhibits Ca-dependent action potentials17. Other studies, however, have concluded that cGMP levels do not correlate with contractile force10,11,18,19 and that cGMP has no effect on ICa20. We have therefore examined the effects of intracellular perfusion of cGMP on ICa using isolated, voltage-clamped cells from frog ventricle. We find that cGMP has negligible effects on basal ICa, but greatly decreases the ICa that had been elevated by β-adrenergic agonists or by intracellular perfusion with cAMP. The decrease of ICa is mediated by cAMP hydrolysis via a cGMP-stimulated cyclic nucleotide phosphodiesterase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

    Article  CAS  Google Scholar 

  2. Tsien, R. Adv. cyclic Nucl. Res. 8, 363–420 (1977).

    CAS  Google Scholar 

  3. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Kameyama, M., Hofmann, F. & Trautwein, W. Pflügers Arch. ges. Physiol. 405, 285–293 (1985).

    Article  CAS  Google Scholar 

  5. Giles, W. & Noble, S. J. Physiol., Lond. 261, 103–123 (1976).

    Article  CAS  Google Scholar 

  6. Hino, N. & Ochi, R. J. Physiol., Lond. 307, 183–197 (1980).

    Article  CAS  Google Scholar 

  7. Fischmeister, R. & Hartzell, C. J. Physiol., Lond. 376, 183–202 (1986).

    Article  CAS  Google Scholar 

  8. Löffelholz, K. & Pappano, A. J. Pharmac. Rev. 37, 1–24 (1985).

    Google Scholar 

  9. Hartzell, C. in Neurobiology of Acetylcholine (eds Dun, N. & Perlman, R.) (Plenum, New York, in the press).

  10. Goldberg, N. D. & Haddox, M. K. A Rev. Biochem. 46, 823–896 (1977).

    Article  CAS  Google Scholar 

  11. Lincoln, T. M. & Corbin, J. D. Adv. cyclic NucL Res. 15, 139–192 (1983).

    CAS  Google Scholar 

  12. Lincoln, T. M. & Keely, S. L. J. cyclic Nucl. Res. 6, 83–91 (1980).

    CAS  Google Scholar 

  13. Flitney, F. W. & Singh, J. J. molec. cell. Cardiol. 13, 963–979 (1981).

    Article  CAS  Google Scholar 

  14. Trautwein, W. & Trübe, W. G. Pflügers Arch. ges. Physiol. 366, 293–296 (1976).

    Article  CAS  Google Scholar 

  15. Nawrath, H. Nature 267, 72–74 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Trautwein, W., Taniguchi, J. & Noma, A. Pflügers Arch. ges. Physiol. 392, 307–314 (1982).

    Article  CAS  Google Scholar 

  17. Bkaily, G. & Sperelakis, N. Am. J. Physiol. 248, H745–749 (1985).

    CAS  PubMed  Google Scholar 

  18. Brooker, G. J. J. cyclic Nucl. Res. 3, 407–413 (1977).

    CAS  Google Scholar 

  19. Linden, J. & Brooker, G. Biochem. Pharmac. 28, 3351–3360 (1979).

    Article  CAS  Google Scholar 

  20. Nargeot, J., Nerbonne, J. M., Engels, J. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 80, 2395–2399 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Weishaar, R. E., Cain, M. H. & Bristol, J. A. J. med. Chem. 28, 537–545 (1985).

    Article  CAS  Google Scholar 

  22. Corbin, J. D. et al. J. biol. chem. 261, 1208–1214 (1986).

    CAS  PubMed  Google Scholar 

  23. Martins, T. J., Mumby, M. C. & Beavo, J. A. J. biol Chem. 257, 1973–1979 (1982).

    CAS  PubMed  Google Scholar 

  24. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Koch, K.-W. & Kaupp, U. B. J. biol Chem. 260, 6788–6800 (1985).

    CAS  PubMed  Google Scholar 

  26. Goldberg, N. D., Ames, A., Gander, J. E. & Walseth, T. F. J. biol Chem. 258, 9213–9219 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartzell, H., Fischmeister, R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323, 273–275 (1986). https://doi.org/10.1038/323273a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323273a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing