Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition from dome-forming to plinian eruptive styles controlled by H2O and Cl degassing

Abstract

The transition from a plinian (pumice) to an effusive (dome-forming) eruptive style is frequently observed in volcanic systems and is generally attributed to the progressive loss of volatiles from magma stored in a superficial reservoir. This explosive–effusive transition has been explained by the evolution from a closed to an open system of degassing1,2,3,4. But in this context, an eruption at Mt Pelée (Martinique, French West Indies) dated at 650 years ago, which exhibited a rarely observed5,6 succession from dome-forming to plinian activity in a short interval of time7, is at odds with such an explanation. In this eruption, near-surface explosions of the dome produced two peléean turbulent pyroclastic flows, whose deposits are similar to those of the effusive 1902 eruption, and then plinian activity produced pumice fallouts and flows. The reconstruction of the degassing paths of both eruptive regimes using the densities and the H2O and Cl contents of the clasts shows that the interaction of rising magma with hydrothermal fluids at shallow depth may play a critical role in determining eruptive style.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlations between X H 2 O , xCl and δD.
Figure 2: Comparison of model results with measured rock compositions.
Figure 3: Sketch of the degassing evolution in a closed and in an open system for the Mt Pelée P1 eruption.

Similar content being viewed by others

References

  1. Eichelberger, J. C., Carrigan, C. R., Westrich, H. R. & Price, R. H. Non-explosive silicic volcanism. Nature 323, 598–602 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Jaupart, C. & Allègre, C. J. Gas content, eruption rate and instabilities in silicic volcanoes. Earth Planet. Sci. Lett. 102, 413–429 (1991).

    Article  ADS  Google Scholar 

  3. Hoblitt, R. P. & Harmon, R. S. Bimodal density distribution of cryptodome dacite from the 1980 eruption of Mount St. Helens, Washington. Bull. Volcanol. 55, 421–437 (1993).

    Article  ADS  Google Scholar 

  4. Eichelberger, J. C. Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu. Rev. Earth Planet. Sci. 23, 41–63 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Hoblitt, R. P. et al. in Fire and Mud Eruptions and Lahars of Mt Pinatubo, Philippines 457–511 (Univ. Washington Press, (1996)).

    Google Scholar 

  6. Sparks, R. S. J., Gardeweg, M. C., Calder, E. S. & Matthews, S. J. Erosion by pyroclastic flows on Lascar Volcano, Chile. Bull. Volcanol. 58, 557–565 (1997).

    Article  ADS  Google Scholar 

  7. Boudon, G., Bourdier, J. L. & Traineau, H. High-energy pyroclastic flows in the recent activity of Mt. Pelée. Martinique.(abstr.) (IAVCEL, Ankara, (1994)).

  8. Villemant, B., Boudon, G. & Komorowski, J. C. U-series disequilibrium in arc magmas induced by water-magma interaction. Earth Planet. Sci. Lett. 140, 259–267 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Villemant, B., Komorowski, J. C. & Boudon, G. Geochemical and textural insights into magma degassing processes during the Peléean-Plinian P1 eruption of Mt. Pelée. Eos 77, 829 (1996).

    Google Scholar 

  10. Gardner, J. E., Thomas, R. M. E., Jaupart, C. & Tait, S. Fragmentation of magma during Plinian volcanic eruptions. Bull. Volcanol. 58, 144–162 (1996).

    Article  ADS  Google Scholar 

  11. Martel, C. Conditions Pré-éruptives et Dégazage des Magmas Andésitiques de la Montagne Pelée (Martinique)Thesis, Univ. Orléans((1996)).

    Google Scholar 

  12. Burnham, C. W. in The Evolution of Igneous Rocks: Fiftieth Anniversary Perspectives (ed. Yoder, H. S.) 439–482 (Princeton Univ. Press, (1979)).

    Google Scholar 

  13. Burnham, C. W. in Volatiles in Magmas 123–129 (Vol 30, Reviews in Mineralogy, Mineral. Soc. Am., Washington DC, (1994)).

    Book  Google Scholar 

  14. Metrich, N. & Rutherford, M. J. Experimental study of chlorine behaviour in hydrous silicic melts. Geochim. Cosmochim. Acta 56, 607–616 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Webster, J. D. Water solubility and chlorine partitioning in Cl-rich granitic systems: effects of melt composition at 2 Kbar and 800 °C. Geochim. Cosmochim. Acta 56, 679–687 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Barclay, J., Carroll, M. R., Houghton, B. F. & Wilson, C. N. J. Pre-eruptive volatile content and degassing history of an evolving peralkaline volcano. J. Volcanol. Geotherm. Res. 74, 75–87 ((1996)).

    Article  ADS  CAS  Google Scholar 

  17. Lacroix, A. La Montagne Pelée et ses Eruptions (Masson, Paris, (1904)).

    Google Scholar 

  18. Sato, H., Fujii, T. & Nakada, S. Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature 360, 664–666 (1992).

    Article  ADS  Google Scholar 

  19. Lejeune, A.-M. & Richet, P. Rheology of crystal bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. 100, 4215–4229 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Swanson, S. E., Naney, M. T., Westrich, H. R. & Eichelberger, J. C. Crystallization history of Obsidian dome, Inyo Domes, California. Bull. Volcanol. 51, 161–176 (1989).

    Article  ADS  Google Scholar 

  21. Sparks, R. S. J. Causes and consequences of pressurisation in lava dome eruptions. Earth. Planet. Sci. Lett. 150, 177–189 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Heiken, G., Wohletz, K. & Eichelberger, J. Fracture fillings and intrusive pyroclasts, Inyo Domes, California. J. Geophys. Res. 93, 4335–4350 (1988).

    Article  ADS  Google Scholar 

  23. Komorowski, J. C. Scanning Electron Microscoy of Pyroclastic Matter: Eruptions of Mt Vesuvius in AD 79 and Mt St Helens in AD 1980.Thesis, Arizona State Univ.((1991)).

    Google Scholar 

  24. Woods, A. W. & Koyaguchi, T. Transitions between explosive and effusive eruptions of silicic magmas. Nature 370, 641–644 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Vincent, P. M., Bourdier, J.-L. & Boudon, G. The primitive volcano of Mt Pelée: its construction and partial destruction by flank collapse. J. Volcanol. Geotherm. Res. 38, 1–16 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. C. Komorowski and R. Clocchiatti for assistance with analyses; P.Agrinier for communicating δD analytical results; S. Sparks for reviews; and C. Jaupart, N. Metrich, J. C. Komorowski, M. P. Semet and S. Tait for discussions. This work was supported by the Programme National sur les Risques Naturels (CNRS-INSU).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villemant, B., Boudon, G. Transition from dome-forming to plinian eruptive styles controlled by H2O and Cl degassing. Nature 392, 65–69 (1998). https://doi.org/10.1038/32144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32144

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing