Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extremely acid Permian lakes and ground waters in North America

Abstract

Evaporites hosted by red beds (red shales and sandstones), some 275–265 million years old, extend over a large area of the North American mid-continent1. They were deposited in non-marine saline lakes, pans and mud-flats2, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH <1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH 2–4) in southern Australia3,4,5,6,7,8,9. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the United States showing the distribution of Permian red beds and evaporites.
Figure 2: Raman spectra of standard solution and fluid inclusions.

Similar content being viewed by others

References

  1. Walker, T. R. Formation of red beds in modern and ancient deserts. Geol. Soc. Am. Bull. 78, 353–368 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Benison, K. C. Acid Water Deposition and Diagenesis of Permian Red Bed-hosted Evaporites, Midcontinent, U.S.A.Thesis, Univ. Kansas((1997).

    Google Scholar 

  3. Alpers, C. N., Rye, R. O., Nordstrom, D. K., White, L. D. & King, B. S. Chemical, crystallographic and stable isotope properties of alunite and jarosite from acid-hypersaline Australian lakes. Chem. Geol. 96, 203–206 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Hines, M. E., Lyons, W. B., Lent, R. M. & Long, D. T. Sedimentary biogeochemistry of an acidic, saline groundwater discharge zone in Lake Tyrell, Victoria, Australia. Chem. Geol. 96, 53–65 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Long, D. T. & Lyons, W. B. Aridity, continental weathering, and groundwater chemistry. Geol. Soc. Am. Abstr. Progm. 22, 295 (1990).

    Google Scholar 

  6. Long, D. T. & Lyons, W. B. Aridity, continental weathering, and ground-water chemistry. Geol. Soc. Am. Today 2, 185–190 (1992).

    Google Scholar 

  7. Long, D. T. et al. Geochemistry of acid brines: Lake Tyrell, Victoria, Australia. Chem. Geol. 96, 33–52 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Macumber, P. G. Hydrological processes in the Tyrell Basin, southeastern Australia. Chem. Geol. 96, 1–18 (1992).

    Article  ADS  CAS  Google Scholar 

  9. McArthur, J. M., Turner, J., Lyons, W. B., Osborn, A. O. & Thirwall, M. F. Hydrochemistry on the Yilgarn Block, Western Australia: Ferrolysis and mineralisation in acidic brines. Geochim. Cosmochim. Acta 55, 1273–1288 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Lowenstein, T. K. & Hardie, L. A. Criteria for the recognition of salt-pan evaporites. Sedimentology 32, 627–644 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Cunningham, K. M., Goldberg, M. C. & Weiner, E. R. Investigation of detection limits for solutes in water measured by laser Raman spectrometry. Anal. Chem. 49, 70–75 (1977).

    Article  CAS  Google Scholar 

  12. Moissette, A., Dubessy, J., Cathlineau, M., Ramanaidou, E. & Le Gleuher, M. Fluids with high acidity evidenced by Raman analysis of sulfate and bisulfate ions in fluid inclusions from a gold showing (Brazil). IAGOD Symp. Progm. Abstr. A18 (1990).

  13. Rosasco, G. J. & Roedder, E. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals. Geochim. Cosmochim. Acta 43, 1907–1915 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Dubessy, J., Boiron, M., Moissette, A., Monnin, C. & Stretenskaya, N. Determinations of water, hydrates, and pH of fluid inclusions by micro-Raman spectrometry. Eur. J. Min. 4, 885–894 (1992).

    Article  CAS  Google Scholar 

  15. Plummer, L. N., Parkhurst, D. L., Fleming, G. W. & Dunkle, S. A. A Computer Program Incorporating Pitzer's Equations for Calculation of Geochemical Reactions in Brines (Water Res. Invest. Rep. 88-4153, US Geol. Surv., Reston, VA, 1988).

    Google Scholar 

  16. Turner, D. J. Raman spectral study of bisulphate ion hydration. J. Chem. Soc. Faraday Trans. 68, 643–648 (1972).

    Article  CAS  Google Scholar 

  17. Rudolph, W. Structure and dissociation of the hydrogen sulphate ion in aqueous solution over a broad temperature range: a Raman study. Z. Phys. Chem. 194, 73–95 (1996).

    Article  CAS  Google Scholar 

  18. Benison, K. C. Surface water paleotemperatures from Permian Nippewalla Group halite, Kansas. Carbonates Evaporites 10, 242–248 (1995).

    Article  Google Scholar 

  19. Benison, K. C. & Goldstein, R. H. Permian paleoclimate data from fluid inclusions in halite. Chem. Geol.(in the press).

  20. Hall, D. L., Bodnar, R. J. & Craig, J. R. Evidence for postentrapment diffusion of hydrogen into peak metamorphic fluid inclusions from the massive sulfide deposits at Ducktown, Tennessee. Am. Mineral. 76, 1344–1355 (1991).

    CAS  Google Scholar 

  21. Marvogenes, J. A. & Bodnar, R. J. Hydrogen movement into and out of fluid inclusions in quartz: Experimental evidence and geologic implications. Geochim. Cosmochim. Acta 58, 141–148 (1994).

    Article  ADS  Google Scholar 

  22. Goldstein, R. H. & Reynolds, T. J. Systematics of Fluid Inclusions in Diagenetic Minerals 199 (Short Course 31, SEPM (Soc. for Sed. Geol.), Tulsa, OK, 1994).

    Book  Google Scholar 

  23. Delmelle, P. & Bernard, A. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawak Ijen Volcano, Indonesia. Geochim. Cosmochim. Acta 58, 2445–2460 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Rowe, G. L. The Acid Crater Lake System of Poas Volcano, Costa Rica: Geochemistry, Hydrology, and Physical Characteristics.Thesis, Pennsylvania State Univ.((1991).

    Google Scholar 

  25. Nordstrom, D. K., Valentine, S. D., Ball, J. D., Plummer, L. N. & Jones, B. F. Measurement of negative pH values and high metal concentrations in extremely acidic mine waters from Iron Mountain, California. Geol. Soc. Am. Abstr. Progm. 23, 383 (1991).

    Google Scholar 

  26. Nordstrom, D. K. in Acid Sulfate Weathering (eds Kittrick, J. A., Fanning, D. S. & Hossner, L. R.) 37–56 (Spec. Publ. 10, Soil Sci. Soc. Am., Madison, WI, 1982).

    Google Scholar 

  27. Berendsen, P. Permian red bed copper mineralization in south-central Kansas. Acad. Sci. Trans. Abstr. 83, 122 (1980).

    Google Scholar 

  28. Hovorka, S. Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34, 1029–1054 (1987).

    Article  ADS  Google Scholar 

  29. Lowenstein, T. K. Origin of depositional cycles in a Permian “saline giant”: the Salado (McNutt zone) evaporites of New Mexico. Geol. Soc. Am. Bull. 100, 592–608 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Presley, M. W. Evolution of Permian evaporite basin in Texas panhandle. Bull. Am. Assoc. Petrol. Geol. Bull. 71, 167–190 (1987).

    Google Scholar 

Download references

Acknowledgements

We thank T. K. Lowenstein and R. J. Bodnar for suggestions that improved this manuscript. This work was partially funded by NSF, GSA and Sigma Xi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Counter Benison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benison, K., Goldstein, R., Wopenka, B. et al. Extremely acid Permian lakes and ground waters in North America. Nature 392, 911–914 (1998). https://doi.org/10.1038/31917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31917

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing