Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds

Abstract

Cooperative functioning of many protein systems depends on communication between different subunits of those systems. Perhaps the best understood cooperative protein system is the vertebrate haemoglobin tetramer, in which the subunits share a similar tertiary structure (the myoglobin fold) with each other and with myoglobins and haemoglobins from at least four different animal phyla and leguminous plants. Blood clams have cooperative tetrameric haemoglobin and, in addition, a cooperative homodimeric haemoglobin 1–6. In view of previous reports7,8 concerning the role of dimers in the vertebrate tetramer, the clam haemoglobins represent a very interesting model system. We report here the low-resolution three-dimensional crystal structures of the dimeric and turmeric cooperative hemoglobins from the blood clam Scapharca inaequivalvis. We find that clam haemoglobins are made of myoglobin-like subunits but their assembly to form dimers and tetramers is quite different from that of vertebrate haemoglobin. The arrangement of the subunits provides a simple structural explanation for haem-haem interaction in the dimer and tetramer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ohnoki, S., Mitomi, Y., Hata, R. & Satake, K. J. Biochem., Tokyo 73, 717–725 (1973).

    Article  CAS  Google Scholar 

  2. Djangmah, J. S., Gabbott, P. A. & Wood, E. J. Comp. Biochem. Physiol. 60 B, 245–250 (1978).

    Google Scholar 

  3. Furuta, H., Ohe, M. & Kajita, A. J. Biochem., Tokyo 82, 1723–1730 (1977).

    Article  CAS  Google Scholar 

  4. Como, P. F. & Thompson, E. O. P. Aust. J. biol. Sci. 33, 643–652 (1980).

    Article  CAS  Google Scholar 

  5. Chiancone, E., Vecchini, P., Verzili, D., Ascoli, F. & Antonini, E. J. molec. Biol 152, 577–592 (1981).

    Article  CAS  Google Scholar 

  6. Ikeda-Saito, M. et al. J. molec. Biol. 170, 1009–1018 (1983).

    Article  CAS  Google Scholar 

  7. Antonini, E. Science 158, 1417–1425 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Mills, F. C., Johnson, M. L. & Ackers, G. A. Biochemistry 15, 5350–5362 (1976).

    Article  CAS  Google Scholar 

  9. Como, P. F. & Thompson, E. O. P. Aust. J. biol. Sci. 33, 653–664 (1980).

    Article  CAS  Google Scholar 

  10. Furuta, H. & Kajita, A. Biochemistry 22, 917–922 (1983).

    Article  CAS  Google Scholar 

  11. Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175–220 (1979).

    Article  CAS  Google Scholar 

  12. Phillips, S. E. V. J. molec. Biol. 142, 531–554 (1980).

    Article  CAS  Google Scholar 

  13. Crowther, R. A. in The Molecular Replacement Method (ed. Rossmann, M. G.) 173–178 (Gordon & Breach, New York, 1972).

    Google Scholar 

  14. Crowther, R. A. & Blow, D. M. Acta crystallogr. 23, 544–548 (1967).

    Article  CAS  Google Scholar 

  15. Ward, K. B., Wishner, B. C., Lattman, E. E. & Love, W. E. J. molec. Biol. 98, 161–177 (1975).

    Article  CAS  Google Scholar 

  16. Wishner, B. C., Ward, K. B., Lattman, E. E. & Love, W. E. J. molec. Biol. 98, 179–194 (1975).

    Article  CAS  Google Scholar 

  17. Rossmann, M. G. Acta crystallogr. 14, 383–388 (1961).

    Article  CAS  Google Scholar 

  18. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, W., Love, W. & Fenderson, F. Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds. Nature 316, 277–280 (1985). https://doi.org/10.1038/316277a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316277a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing