Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An intermolecular (H2O)10 cluster in a solid-state supramolecular complex

Abstract

Chemical self-assembly is the process by which ‘programmed’ molecular subunits spontaneously form complex supramolecular frameworks1,2. This approach has been applied to many model systems, in which hydrogen bonds3,4, metal–ligand coordination5 or other non-covalent interactions6 typically control the self-assembly process. In biology, self-assembly is generally dynamic and depends on the cooperation of many such non-covalent interactions. Water can play an important role in these biological self-assembly processes, for example by stabilizing the native conformation of biopolymers7,8,9. Hydrogen-bonded (H2O)n clusters10,11 can play an important role in stabilizing some supramolecular species, both natural and synthetic, in aqueous solution. Here we report the preparation and crystal structure of a self-assembled, three-dimensional supramolecular complex that is stabilized by an intricate array of non-covalent interactions involving contributions from solvent water clusters, most notably a water decamer ((H2O)10) with an ice-like molecular arrangement. These findings show that the degree of structuring that can be imposed on water by its surroundings, and vice versa, can be profound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Ball-and-stick perspective view of sections of three adjacent supramolecular strands (viewed perpendicular to the crystallographic c axis).
Figure 3: Comparison between the water decamer (in red) and ice Ic (in blue).
Figure 4: The structures of the ice phases Ih (a) and Ic (b).

Similar content being viewed by others

References

  1. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, (1995)).

    Google Scholar 

  2. Lehn, J.-M. Supramolecular chemistry. Science 260, 1762–1763 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Seto, C. T. & Whitesides, G. M. Molecular self-assembly through hydrogen bonding: Supramolecular aggregates based on the cyanuric acid · melamine lattice. J. Am. Chem. Soc. 115, 905–916 (1993).

    Article  CAS  Google Scholar 

  4. Wyler, R., de Mendoza, J. & Rebek, J. Asynthetic cavity assembles through self-complementary hydrogen bonds. Angew. Chem. Int. Edn Engl. 32, 1699–1701 (1993).

    Article  Google Scholar 

  5. Hasenknopf, B., Lehn, J.-M., Kneisel, B., Baum, O. G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Edn Engl. 35, 1838–1840 (1996).

    Article  CAS  Google Scholar 

  6. Oriol, J. et al. Adesigned non-peptidic receptor that mimics the phosphocholine binding site of the McPC603 antibody. Angew. Chem. Int. Edn Engl. 35, 1712–1715 (1996).

    Article  Google Scholar 

  7. Dehl, R. E. & Hoeve, C. A. Broad-line NMR study of H2O and D2O in collagen fibres. J. Chem. Phys. 50, 3245–3251 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Migchelsen, C., Berendsen, H. J. C. & Rupprecht, A. Hydration of DNA. Comparison of nuclear magnetic resonance results for oriented DNA in the A, B and C form. J. Mol. Biol. 37, 235–237 (1968).

    Article  CAS  Google Scholar 

  9. Steckel, F. & Szapiro, S. Physical properties of heavy oxygen water. Part I–Density and thermal expansion. Trans. Faraday Soc. 59, 331–343 (1963).

    Article  CAS  Google Scholar 

  10. Colson, S. D. & Dunning, T. H. The structure of Nature's solvent: water. Science 265, 43–44 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Liu, K., Cruzan, J. D. & Saykally, R. J. Water clusters. Science 271, 929–933 (1996).

    Article  ADS  CAS  Google Scholar 

  12. König, H. Acubic ice modification. Z. Kristallogr. 105, 279–286 (1944).

    Article  Google Scholar 

  13. Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water (Oxford Univ. Press, New York, (1969)).

    Google Scholar 

  14. Franks, F. (ed.) Water: A Comprehensive Treatise Vols 1–4;(Plenum, New York, (1972)).

    Google Scholar 

  15. Westhoff, E. (ed.) Water and Biological Macromolecules (CRC Press, Boca Raton, (1993)).

    Book  Google Scholar 

  16. Jeffrey, G. A. in Inclusion Compounds Vol. 1(eds Atwood, J. L., Davies, J. E. D. & MacNicol, D. D.) Ch. 5 (Academic, London, (1984)).

    Google Scholar 

  17. Park, K.-M., Kurodo, R. & Iwamoto, T. Atwo-dimensional ice with the topography of edge-sharing hexagons intercalated between CdNi(CN)4layers. Angew. Chem. Int. Edn Engl. 32, 884–886 (1993).

    Article  Google Scholar 

  18. Rau, D. C. & Parsegian, V. A. Direct measurement of forces between linear polysaccharides Xanthan and Schizophyllan. Science 249, 1278–1281 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Royer, W. E., Pardanani, A., Gibson, Q. H., Peterson, E. S. & Feldman, J. M. Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc. Natl Acad. Sci. USA 93, 14526–14531 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Teeter, M. M. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. Proc. Natl Acad. Sci. USA 81, 6014–6018 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Baker, E. N. Structure of actinidin, after refinement at 1.7 Å resoution. J. Mol. Biol. 141, 441–484 (1980).

    Article  CAS  Google Scholar 

  22. Liljas, A. et al. Crystal structure of human carbonic anhydrase C. Nature New Biol. 235, 131–137 (1972).

    Article  CAS  Google Scholar 

  23. Quiocho, F. A., Wilson, D. K. & Vyas, N. K. Substrate specificity and affinity of a protein modulated by bound water molecules. Nature 340, 404–407 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Barnes for assistance with the unit cell and space group determination. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L. Atwood.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbour, L., Orr, G. & Atwood, J. An intermolecular (H2O)10 cluster in a solid-state supramolecular complex. Nature 393, 671–673 (1998). https://doi.org/10.1038/31441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31441

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing