Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein

Abstract

Ubiquitin1, a 76-residue protein, occurs in cells either free or covalently joined to a variety of protein species2,3, from chromosomal histones4–6 to cytoplasmic proteins. Conjugation of ubiquitin to proteolytic substrates is essential for the selective degradation of intracellular proteins in higher eukaryotes7,8. We show here that a protein homologous to human ubiquitin exists in the yeast Saccharomyces cerevisiae, and that yeast extracts conjugate human ubiquitin to a variety of endogenous proteins in an ATP-dependent reaction. We have isolated the S. cerevisiae ubiquitin gene and found it to contain six consecutive ubiquitin-coding repeats in a head-to-tail arrangement. This apparently unique gene organization suggests that yeast ubiquitin is generated by processing of a precursor protein in which several exact repeats of the ubiquitin amino acid sequence are joined directly via Gly–Met peptide bonds between the last and first residues of mature ubiquitin, respectively. Ubiquitin-coding yeast DNA repeats are restricted to a single genomic locus; although the sequenced repeats differ in up to 27 of 228 bases per repeat, they encode identical amino acid sequences. As this predicted amino acid sequence differs in only 3 of 76 residues from that of ubiquitin in higher eukaryotes, ubiquitin is apparently the most conserved of known proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlesinger, D. H. & Goldstein, G. Nature 255, 423–424 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Hershko, A. Cell 34, 11–12 (1983).

    Article  CAS  Google Scholar 

  3. Hershko, A. & Ciechanover, A. A. Rev. Biochem. 51, 335–364 (1982).

    Article  CAS  Google Scholar 

  4. Goldknopf, I. L. & Busch, H. Molec. cell. Biochem. 40, 173–187 (1981).

    PubMed  Google Scholar 

  5. Levinger, L. & Varshavsky, A. Cell 28, 375–385 (1982).

    Article  CAS  Google Scholar 

  6. West, M. H. P. & Bonner, W. M. Nucleic Acids Res. 8, 4671–4680 (1980).

    Article  CAS  Google Scholar 

  7. Ciechanover, A., Finley, D. & Varshavsky, A. Cell 37, 57–66 (1984).

    Article  CAS  Google Scholar 

  8. Hershko, A. et al. Proc. natn. Acad. Sci. U.S.A. 81, 1619–1623 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Finley, D., Ciechanover, A. & Varshavsky, A. Cell 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  10. Hershko, A. et al. J. biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  Google Scholar 

  11. Chin, D. T., Kuehl, L. & Rechsteiner, M. Proc. natn. Acad. Sci. U.S.A. 79, 5857–5861 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Atidia, J. & Kulka, R. G. FEBS Lett. 142, 72–76 (1982).

    Article  CAS  Google Scholar 

  13. Young, R. A. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 80, 1194–1198 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Young, R. A. & Davis, R. W. Science 222, 778–782 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  16. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  17. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  18. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  19. Zaret, K. S. & Sherman, F. Cell 28, 563–573 (1982).

    Article  CAS  Google Scholar 

  20. Anderson, M. W., Goldknopf, I. L. & Busch, H. FEBS Lett. 132, 210–214 (1981).

    Article  Google Scholar 

  21. Matsui, S. et al. Proc. natn. Acad. Sci. U.S.A. 79, 1535–1539 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Rose, I. A. & Warms, J. V. B. Biochemistry 22, 4234–4237 (1983).

    Article  CAS  Google Scholar 

  23. Douglass, J. et al. A. Rev. Biochem. 53, 665–716 (1984).

    Article  CAS  Google Scholar 

  24. Scheller, R. H. et al. Cell 32, 7–22 (1983).

    Article  CAS  Google Scholar 

  25. Hanecak, R. et al. Cell 37, 1063–1073 (1984).

    Article  CAS  Google Scholar 

  26. Kurjan, J. & Herskowitz, I. Cell 30, 933–943 (1982).

    Article  CAS  Google Scholar 

  27. Julius, D. et al. Cell 32, 839–852 (1983).

    Article  CAS  Google Scholar 

  28. Brandt, W. F., Patterson, K. & von Holt, C. Eur. J. Biochem. 110, 67–76 (1980).

    Article  CAS  Google Scholar 

  29. Glover, C. V. C. et al. Proc. natn. Acad. Sci. U.S.A. 76, 585–589 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Kessler, S. W. J. Immun. 115, 1617–1624 (1975).

    CAS  PubMed  Google Scholar 

  31. Helfman, D. M. et al. Proc. natn. Acad. Sci. U.S.A. 80, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Jacobsen; H., Klenow, H. & Overgaard-Hansen, K. Eur. J. Biochem. 45, 623–627 (1974).

    Article  CAS  Google Scholar 

  33. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).

    Article  CAS  Google Scholar 

  34. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80, 3963–3965 (1983).

    Article  ADS  CAS  Google Scholar 

  35. Gavilanes, J. G. et al. J. biol. Chem. 257, 10267–10270 (1982).

    CAS  PubMed  Google Scholar 

  36. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkaynak, E., Finley, D. & Varshavsky, A. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312, 663–666 (1984). https://doi.org/10.1038/312663a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312663a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing