Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A simple correlation between isotropic 29Si-NMR chemical shifts and T–O–T angles in zeolite frameworks

Abstract

29Si high-resolution solid-state nuclear magnetic resonance (NMR) spectrometry with magic-angle spinning (MASNMR) has proved to be a valuable tool for the quantitative identification of local Si(O–Al)n(O–Si)4–n environments of silicon in zeolitic frameworks1–4 where n = 0, 1, 2, 3 or 4. In addition, in certain cases, notably silicalite5 and several highly siliceous (dealuminated) zeolites6, crystallographically non-equivalent Si(O–Si)4 sites have also been distinguished. The accumulated NMR data on a number of zeolites have enabled us to derive a semi-empirical relationship between 29Si isotropic chemical shifts in aluminosilicates and the non-bonded SiT distance (T = Si or Al). The relationship holds for all aluminosilicates and all the five types of Si(O–Al)n(O–Si)4–n tetrahedral environments; it also applies to silica polymorphs. The average value of Si–O–T angle for each kind of silicon site in aluminosilicates of unknown structure can now be estimated from 29Si-MASNMR, which holds considerable promise for structure elucidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A. R. J. Am. chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

  2. Lippmaa, E., Mägi, M., Samoson, A., Tarmak, M. & Engelhardt, G. J. Am. chem. Soc. 103, 4992–4996 (1981).

    Article  CAS  Google Scholar 

  3. Ramdas, S., Thomas, J. M., Klinowski, J., Fyfe, C. A. & Hartman, J. S. Nature 292, 228–230 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Fyfe, C. A., Thomas, J. M., Klinowski, J. & Gobbi, G. C. Angew. Chem. Int. Ed. Engl. 22, 259–336 (1983).

    Article  Google Scholar 

  5. Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M. & Ramdas, S. Nature 296, 530–533 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Thomas, J. M., Klinowski, J., Ramdas, S., Hunter, B. K. & Tennakoon, D. T. B. Chem. Phys. Lett. 102, 158–162 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Thomas, J. M., Fyfe, C. A., Ramdas, S., Klinowski, J. & Gobbi, G. C. J. phys. Chem. 86, 3061–3064 (1982).

    Article  CAS  Google Scholar 

  8. Jarman, R. H. JCS chem. Commun., 512–513 (1983).

  9. Grimmer, A. R., von Lampe, F., Tarmak, M. & Lippmaa, E. Chem. phys. Lett. 97, 185–187 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Smith, J. V. & Blackwell, C. S. Nature 303, 223–225 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Gibbs, G. V., Meagher, E. P., Newton, M. D. & Swanson, D. K. in Structure and Bonding in Crystals (eds O'Keeffe, M. & Navrotsky, A.) (Academic, New York, 1981).

    Google Scholar 

  12. Thomas, J. M., Bursill, L. A., Lodge, E. A., Cheetham, A. K. & Fyfe, C. A. JCS chem. Commun., 276–277 (1981).

  13. Pluth, J. J. & Smith, J. V. J. Am. chem. Soc. 102, 4704–4708 (1980).

    Article  CAS  Google Scholar 

  14. Melchior, M. T., Vaughan, D. E. W., Jarman, R. H. & Jacobson, A. J. Nature 298, 455–456 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Klinowski, J., Ramdas, S., Thomas, J. M., Fyfe, C. A. & Hartman, J. S. JCS Faraday Trans. II 78, 1025–1050 (1982).

    Article  CAS  Google Scholar 

  16. Olson, D. H., J. Phys. Chem. 74, 2758–2764 (1970).

    Article  CAS  Google Scholar 

  17. Gallezot, P., Beaumont, R. & Barthomeuf, D. J. phys. Chem. 78, 1550–1553 (1974).

    Article  CAS  Google Scholar 

  18. Klinowski, J., Thomas, J. M., Fyfe, C. A. & Hartman, J. S. J. phys. Chem. 85, 2590–2594 (1981).

    Article  CAS  Google Scholar 

  19. Bresciani Pahor, N., Calligaris, M., Nardin, G. & Randaccio, L. Acta crystallogr. B38, 893–895 (1982).

    Article  Google Scholar 

  20. Klinowski, J., Thomas, J. M., Ramdas, S., Fyfe, C. A. & Gobbi, G. C. 2nd Workshop on the Adsorption of Hydrocarbons on Microporous Sorbents, Eberswalde, DDR, Vol. 2 (Suppl.) (Akademie der Wissenschaften der DDR, 1982).

    Google Scholar 

  21. Fischer, K. N. Jahrb. Mineral. Monatsh. 1–13 (1966).

  22. Smith, J. V., Knowles, C. R. & Rinaldi, F. Acta crystallogr. 17, 374–384 (1964).

    Article  CAS  Google Scholar 

  23. Engelhardt, G., Mägi, M. & Lippmaa, E. 2nd Workshop on the Adsorption of Hydrocarbons on Microporous Sorbents, Eberswalde, DDR, Vol. 2, 1 (Akademie der Wissenschaften der DDR, 1982).

    Google Scholar 

  24. Fälth, L. & Hansen, S. Acta crystallogr. B35, 1877–1880 (1979).

    Article  Google Scholar 

  25. Alberti, A. & Vezzalini, G. Acta crystallogr. B37, 781–788 (1981).

    Article  Google Scholar 

  26. Schramm, V. & Fischer, K. Adv. Chem. Ser. 101, 259–265 (1971).

    Article  CAS  Google Scholar 

  27. Ferraris, G., Jones, D. W. & Yerkess, J. Z. Kristallogr. 135, 240–252 (1972).

    Article  CAS  Google Scholar 

  28. Olson, D. H., Kokotailo, G. T., Lawton, S. L. & Meier, W. M. J. phys. Chem. 85, 2238–2243 (1981).

    Article  CAS  Google Scholar 

  29. Baerlocher, C. H. & Meier, W. M. Helv. chim. Acta 52, 1853–1860 (1969).

    Article  CAS  Google Scholar 

  30. Galli, E. Cryst. Str. Commun. 3, 339–344 (1974).

    CAS  Google Scholar 

  31. Gard, J. A. & Tait, J. M. Acta crystallogr. B28, 825–834 (1972).

    Article  CAS  Google Scholar 

  32. Schlenker, J. L., Pluth, J. J. & Smith, J. V. Mat. Res. Bull. 14 849–856 (1979).

    Article  CAS  Google Scholar 

  33. Klinowski, J., Thomas, J. M., Audier, M., Vasudevan, S., Fyfe, C. A. & Hartman, J. S. JCS chem. Commun. 570–571 (1981).

  34. Parise, J. B. & Cox, D. E., Z. Kristallogr. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdas, S., Klinowski, J. A simple correlation between isotropic 29Si-NMR chemical shifts and T–O–T angles in zeolite frameworks. Nature 308, 521–523 (1984). https://doi.org/10.1038/308521a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308521a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing