Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Birth kicks as the origin of pulsar rotation

Abstract

Radio pulsars are thought to born with spin periods of 0.02–0.5 s and space velocities of 100–1,000 km s−1, and they are inferred to have initial dipole magnetic fields of 1011–1013 G (15). The average space velocity of their progenitor stars is less than 15 km s−1, which means that pulsars must receive a substantial ‘kick’ at birth. Here we propose that the birth characteristics of pulsars have a simple physical connection with each other. Magnetic fields maintained by differential rotation between the core and envelope of the progenitor would keep the whole star in a state of approximately uniform rotation until10 years before the explosion. Such a slowly rotating core has 1,000 times less angular momentum than required to explain the rotation of pulsars. The specific physical process that ‘kicks’ the neutron star at birth has not been identified, but unless its force is exerted exactly head-on6 it will also cause the neutron star to rotate. We identify this process as the origin of the spin of pulsars. Such kicks may cause a correlation between the velocity and spin vectors of pulsars. We predict that many neutron stars are born with periods longer than 2 s, and never become radio pulsars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotation periods and velocities of pulsars compared with model.

Similar content being viewed by others

References

  1. Narayan, R. The birthrate and initial spin period of single radio pulsars. Astrophys. J. 319, 162–179 (1987).

    Article  ADS  Google Scholar 

  2. Bhattacharya, D., Wijers, R. A. M. J., Hartman, J. W. & Verbunt, F. On the decay of the magnetic fields of single radio pulsars. Astron. Astrophys. 254, 198–212 (1992).

    ADS  Google Scholar 

  3. Lorimer, D. R., Bailes, M., Dewey, R. J. & Harrison, P. A. Pulsar statistics — The birth rates and initial spin periods of radio pulsars. Mon. Not. R. Astron. Soc. 263, 403–415 (1993).

    Article  ADS  Google Scholar 

  4. Lyne, A. G. & Lorimer, D. R. High birth velocities of radio pulsars. Nature 369, 127–129 (1994).

    Article  ADS  Google Scholar 

  5. Hansen, B. M. S. & Phinney, E. S. The pulsar kick velocity distribution. Mon. Not. R. Astron. Soc. 291, 569–577 (1997).

    Article  ADS  Google Scholar 

  6. Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830–850 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Langer, N., Fliegner, J., Heger, A. & Woosley, S. E. Nucleosynthesis in rotating massive stars. Nucl. Phys. A 621, 475c–466c (1997).

    Article  Google Scholar 

  8. Thompson, M. J.et al. Solar internal rotation and dynamics from GONG frequency splittings. Science 272, 1300–1305 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Corbard, T.et al. Solar internal rotation from LOWL data. A 2D regularized least-squares inversion using B-splines. Astron. Astrophys. 324, 298–310 (1997).

    ADS  Google Scholar 

  10. Spruit, H. C., Knoblock, E. & Roxburgh, I. W. Internal rotation of the sun. Nature 304, 520–522 (1983).

    Article  ADS  Google Scholar 

  11. Endal, A. S. & Sofia, S. The evolution of rotating stars. II — Calculations with time-dependent redistribution of angular momentum for 7- and 10-solar-mass stars. Astrophys. J. 220, 279–290 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Mestel, L. Rotation and stellar evolution. Mon. Not. R. Astron. Soc. 113, 735 (1953).

    Article  ADS  Google Scholar 

  13. Charbonneau, P. & MacGregor, K. B. Angular momentum transport in magnetized stellar radiative zones. I — Numerical solutions to the core spin-up model problem. Astrophys. J. 387, 639–661 (1992).

    Article  ADS  Google Scholar 

  14. Acheson, D. J. On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. Lond. 289, 459–500 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. Balbus, S. A. General local stability criteria for stratified, weakly magnetized rotating systems. Astrophys. J. 453, 380–383 (1995).

    Article  ADS  Google Scholar 

  16. Tout, C. A. & Pringle, J. E. accretion disc velocity — A simple model for a magnetic dynamo. Mon. Not. R. Astron. Soc. 256, 269–276 (1992).

    Article  ADS  Google Scholar 

  17. Regös, E. & Tout, C. A. The effect of magnetic fields in common-envelope evolution on the formation of cataclysmic variables. Mon. Not. R. Astron. Soc. 273, 146–156 (1995).

    Article  ADS  Google Scholar 

  18. Slettebak, A. in Stellar Rotation (ed. Slettebak, A.) 3–8 (Reidel, Dordrecht, 1970).

    Google Scholar 

  19. Herant, M., Benz, W. & Colgate, S. Postcollapse hydrodynamics of SN 1987A — Two-dimensional simulations of the early evolution. Astrophys. J. 395, 642–653 (1992).

    Article  ADS  Google Scholar 

  20. Burrows, A. & Hayes, J. Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. Phys. Rev. Lett. 76, 352–355 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Janka, H.-Th. & Müller, E. Neutrino heating, convection, and the mechanism of Type-II supernova explosions. Astron. Astrophys. 306, 167–198 (1996).

    ADS  CAS  Google Scholar 

  22. Janka, H.-Th. & Müller, E. Neutron star recoils from anisotropic supernovae. Astron. Astrophys. 290, 496–502 (1994).

    ADS  CAS  Google Scholar 

  23. Janka, H.-Th. & Müller, E. Neutron star kicks and multi-dimensional supernova models. Ann. NY Acad. Sci. 759, 269–274 (1995).

    Article  ADS  Google Scholar 

  24. Keil, W., Janka, H.-Th. & Müller, E. Ledoux convection in protoneutron stars — clue to supernova nucleosynthesis? Astrophys. J. 473, L111–L114 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Thompson, C. & Duncan, R. C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194–217 (1993).

    Article  ADS  Google Scholar 

  26. Burrows, A. Convection and the mechanism of type II supernovae. Astrophys. J. 318, L57–L61 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Horowitz, C. J. & Li, G. Cumulative parity violation in supernovae.Preprint hep-ph/9701214 ((1997).

  28. Lai, D. & Qian, Y.-Z. Neutrino transport in strongly magnetized proto-neutron stars and the origin of pulsar kicks: I. The effect of parity violation in weak interactions. Astrophys. J.(submitted): preprint astro-ph/9802344 ((1998).

  29. Haberl, F., Motch, C., Buckley, D. A. H., Zickgraf, F.-J. & Pietsch, W. RXJ0720.4-3125: strong evidence for an isolated pulsating neutron star. Astron. Astrophys. 326, 662–668 (1997).

    ADS  Google Scholar 

  30. Mergehetti, S., Stella, L. & Israel, G. L. Recent results on anomalous X-ray pulsars.Preprint astro-ph/97122254 ((1997).

Download references

Acknowledgements

E.S.P. thanks G. Soberman and S. Woosley for the sequences of stellar models used in the integrations. E.S.P. is supported in part by the US NSF and NASA, and thanks ESO for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Spruit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruit, H., Phinney, E. Birth kicks as the origin of pulsar rotation. Nature 393, 139–141 (1998). https://doi.org/10.1038/30168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30168

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing