Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxygen isotopic-hydrographic relationships among recent planktonic Foraminifera from the Indian Ocean

Abstract

The stable isotopic composition of fossil Foraminifera has become an increasingly important tool in palaeoecological and stratigraphic studies of marine sediments1–3, prompting several studies of the factors governing the isotopic composition of living and recent Foraminifera. Many studies have documented the good agreement between the inferred depth of growth from oxygen isotopic data4–8 and the depth stratification found in plankton tows9–11. Although results have suggested disequilibrium in some species12–14, especially among the benthic species15–16, recent data from Sargasso Sea plankton tows17–19 and Indian Ocean core top sediments20,21 suggest that oxygen isotopic equilibrium is nearly achieved in many ecologically important species. In the present study, oxygen isotopic data on as many as eight species and subspecies of planktonic Foraminifera from 52 Indian Ocean core top samples permit a comprehensive comparison of the isotopic–temperature trends across the major océanographie regions of the Indian Ocean (Table 1). Several shallow-dwelling species (Globigerinoides ruber, G. sacculifer and Orbulina universa) were used as a measure of the upper 50–100 m of the water column (the mixed surface layer). Several deep-dwelling species (G. truncatulinoides (left and right coiling varieties), G. inflata, G. scitula and G. hirsuta) were used for comparison with hydrographie data from 200 to 300m depths. The results show that the isotopic difference between the shallow and deep-dwelling species is directly related to the temperature difference between the surface waters and the depth of the permanent thermocline. This isotopic–temperature relationship suggests that isotopic analyses of species which inhabit different water depths may be used to determine the thermal gradient in the upper water column during the Cenozoic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hecht, A. D. in Foraminifera Vol. 2 (eds Hedley, G. H. & Adams, G. C.) 1–43 (Academic, London, 1976).

    Google Scholar 

  2. Van Donk, J. in Oceanic Micropaleontology (ed. Ramsay, A. T. S.) 1345–1370 (Academic, London, 1977).

    Google Scholar 

  3. Savin, S. M. A. Rev. Earth Planet. Sci. 5, 319–355 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Emiliani, C. Am. J. Sci. 252, 149–158 (1954); Science 173, 1122–1124 (1971).

    Article  ADS  Google Scholar 

  5. Hecht, A. D. & Savin, S. M. Science 170, 69–71 (1970); J. Foram. Res. 2, 55–67 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Savin, S. M. & Douglas, R. G. Bull. geol. Soc. Am. 84, 2327–2343 (1973).

    Article  CAS  Google Scholar 

  7. Oba, T. Tohoku Univ. Sci. Rep. 2nd Ser. (Geol) 41, 129–195 (1969).

    Google Scholar 

  8. Williams, D. F. thesis, Univ. Rhode Island (1976).

  9. Bé, A. W. H. Micropaleontology 6, 373–392 (1960).

    Article  Google Scholar 

  10. Bé, A. W. H. & Tolderlund, D. S. Micropaleontology 17, 297–329 (1971).

    Google Scholar 

  11. Berger, W. H. Deep-Sea Res. 16, 1–24 (1969).

    ADS  Google Scholar 

  12. Van Donk, J. thesis, Columbia Univ. (1970).

  13. Vergnaud-Grazzini, C. Palaeogeogr., Palaeoclim., Palaeoecol. 20, 263–276 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Kahn, M. I. Oceanol. Acta. 2, 195–208 (1979).

    CAS  Google Scholar 

  15. Duplessy, J. C., Lalou, C. & Vinot, A. C. Science 168, 250–251 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Erez, J. Nature 273, 199–203 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Williams, D. F., Bé, A. W. H. & Fairbanks, R. G. Science 206, 447–449 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Williams, D. F., Bé, A. W. H. & Fairbanks, R. G. Geol. Soc. Am. Abstr. Prog. 11, 541 (1979).

    CAS  Google Scholar 

  19. Fairbanks, R. G., Wiebe, P. H. & Bé, A. W. H. Geol. Soc. Am. Abstr. Prog. 11, 422 (1979).

    Google Scholar 

  20. Williams, D. F. Trans. Am. geophys. Un. 59, 297 (1978).

    Google Scholar 

  21. Prell, W. L. & Curry, W. B. Trans. Am. Geophys. Un. 59, 298 (1978).

    Google Scholar 

  22. Prell, W. L., Hutson, W., Williams, D. F. & Bé, A. W. H. Quat. Res.(in the press).

  23. Duplessy, J. C. in Climatic Change (ed. Gribbin, J.) 46–67 (Cambridge University Press, 1978).

    Google Scholar 

  24. Shackleton, N. J. & Vincent, E. Mar. Micropaleontol. 3, 1–13 (1978).

    Article  ADS  Google Scholar 

  25. Wyrtki, K. Oceanographic Atlas of the International Indian Ocean Expedition (NSF, 1971).

    Google Scholar 

  26. Oceanographic office, World Atlas of Sea Surface Temperatures (H. O. Publ. No. 225, Washington, D.C., 1944); Monthly Charts of Mean, Minimum and Maximum Sea Surface Temperature of the Indian Ocean (SP-99, Washington, D.C., 1967).

  27. Craig, H. & Gordon, L. T. in Stable Isotopes in Oceanographic Studies and Paleotemperatures (ed. Tongiorgi, A.) 9–130 (1965).

    Google Scholar 

  28. O'Neil, J. R., Clayton, R. N. & Mayeda, T. J. Chem. 51, 5547–5558 (1969).

    ADS  CAS  Google Scholar 

  29. Hutson, W. H. Geology (in the press).

  30. Vincent, E. & Shackleton, N. J. in Memorial Volume to O. Bandy (in the press).

  31. Imbrie, J. & Kipp, N. The Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 71–182 (Yale University Press, New Haven, 1971).

    Google Scholar 

  32. Climap project, Science 191, 1131–1137 (1976).

  33. Berger, W., Killingley, J. S. & Vincent, E. Oceanol. Acta 1, 203–216 (1978).

    CAS  Google Scholar 

  34. Curry, W. B. & Matthews, R. K. Trans. Am. geophys. Un. 58, 415 (1977).

    Google Scholar 

  35. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Bull. geol. Soc. Am. 64, 1315–1328 (1953).

    Article  CAS  Google Scholar 

  36. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  37. Williams, D. F., Sommer, M. A. & Bender, M. L. Earth planet. Sci. Lett. 36, 391–403 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D., Healy-Williams, N. Oxygen isotopic-hydrographic relationships among recent planktonic Foraminifera from the Indian Ocean. Nature 283, 848–852 (1980). https://doi.org/10.1038/283848a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283848a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing