Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accretion powers the brightest stars

Abstract

The brightest known stars in external galaxies are the Hubble–Sandage variables. These are normally assumed to be hot, massive, single stars evolving either towards or off the main-sequence. An alternative model is developed here involving binary mass transfer and accretion on to main-sequence stars. In this case the Hubble–Sandage variables are a third, and presumably final, class of binary in which accretion generates the bulk of the radiation observed. The other two classes are binaries containing an accreting white dwarf (cataclysmic variables)1,2 and an accreting neutron star or black hole (binary X-ray sources)3,4. Accretion disk models developed in these two cases can be scaled directly to treat the main-sequence case. One of the most complex objects in our own Galaxy is the η Carina nebula, rivalling in this respect the Orion Nebula and the Crab. I suggest below that η Can itself is an accreting main sequence star whose explosive outburst in the nineteenth century was caused by runaway mass accretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bath, G. T., Evans, W. D., Papaloizou, J. & Pringle, J. E. Mon. Not. R. astr. Soc. 169, 447 (1974).

    Article  ADS  Google Scholar 

  2. Pringle, J. E. Mon. Not. R. astr. Soc. 178, 195 (1977).

    Article  ADS  Google Scholar 

  3. Pringle, J. E. & Rees, M. J. Astr. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  4. Shakura, N. J. & Sunyaev, R. A. Astr. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  5. Hubble, E. & Sandage, A. Astrophys. J. 118, 353 (1953).

    Article  ADS  Google Scholar 

  6. Humphreys, R. M. Astrophys. J. 200, 426 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Humphreys, R. M. Astrophys. J. 219, 445 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Rosino, L. & Bianchini, A. Astr. Astrophys. 22, 453 (1973).

    ADS  Google Scholar 

  9. Warner, B. IAU Symp. No. 73, 85 (eds Eggelton, P., Mitton, S. & Whelan, J.A.J.) (Reidel, Dordrecht, 1976).

  10. Bath, G. T., Pringle, J. E. & Whelan, J. A. J. Mon. Not. R. astr. Soc. (in the press).

  11. Kraft, R. P. Astrophys. J. 135, 408 (1962).

    Article  ADS  CAS  Google Scholar 

  12. Ulrich, R. K. & Burger, H. L. Astrophys. J. 206, 509 (1976).

    Article  ADS  Google Scholar 

  13. Kippenhahn, R. & Meyer-Hofmeister, E. Astr. Astrophys. 54, 539 (1977).

    ADS  Google Scholar 

  14. Neo, S., Miyaji, S., Nomoto, K. & Sugimoto, D. Publ. astr. Soc. Jap. 29, 249 (1977).

    ADS  Google Scholar 

  15. Schwarzschild, M. & Härm, R. Astrophys. J. 128, 348 (1958).

    Article  ADS  Google Scholar 

  16. Iben, I. Astrophys. J. 142, 993 (1965).

    Article  ADS  Google Scholar 

  17. Stothers, R. Astrophys. J. 138, 1074 (1963).

    Article  ADS  CAS  Google Scholar 

  18. Bath, G. T. Mon. Not. R. astr. Soc. 182, 35 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Davidson, K. D. Mon. Not. R. astr. Soc. 154, 415 (1971).

    Article  ADS  Google Scholar 

  20. Warren-Smith, R. F., Scarrott, S. M., Murdin, P. & Bingham, R. G. Mon. Not. R. astr. Soc. 187, 761 (1979).

    Article  ADS  Google Scholar 

  21. Pagel, B. E. J. Astrophys. Lett. 4, 221 (1969).

    ADS  Google Scholar 

  22. Thompson, R. I., Strittmatter, P. A., Erickson, E. F., Witteborn, F. C. & Strecker, D. W. Astrophys. J. 218, 170 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Lynden-Bell, D. Nature 233, 690 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bath, G. Accretion powers the brightest stars. Nature 282, 274–276 (1979). https://doi.org/10.1038/282274a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282274a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing