Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photon decay in curved space-time

Abstract

RECENT astrophysical observations1,2 have raised doubts as to whether the large redshifts of distant galaxies (the Hubble redshift) are due entirely to cosmological expansion. The strongest argument3 in favour of cosmological expansion is that there is no known hypothesis consistent with the laws of physics (other than the Doppler shift hypothesis) that can explain the observed redshifts. An alternative explanation—a gradual energy loss of photons due to their interaction with curved space-time—is considered here. The basic premise is that because photons have a finite spread they are subject to tidal stresses and that this provides a mechanism for the transfer of momentum from the photon to the mass producing curved space-time. Any transfer of momentum without an equivalent transfer of energy will destroy the concept of the photon as a single elementary particle. It is therefore postulated that the interaction of the photon with curved space-time causes it to lose energy in the form of very low energy secondary photons. As well as providing an explanation for the Hubble redshift this hypothesis can also explain the solar limb effect, that is, the increasing redshift of solar spectral lines as the viewpoint approaches the limb of the Sun.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Field, G. B. in IAU Symp. No. 63 (ed Longair, M. S.) (Reidel, Dordrecht, 1974).

    Google Scholar 

  2. Burbidge, G. R. Nature 246, 17–25 (1973).

    ADS  Google Scholar 

  3. Field, G. B., Arp, H. & Bahcall, J. N. The Redshift Controversy, 82 (Benjamin, Reading, Massachusetts, 1973).

    Google Scholar 

  4. Felice de, F. Gen. Rel. Gravit. 2, 347–357 (1971).

    Article  ADS  Google Scholar 

  5. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, San Francisco, 1973).

    Google Scholar 

  6. Sandage, A. & Tamman, G. A. Astrophys. J. 197, 265–280 (1975).

    Article  ADS  Google Scholar 

  7. Field, G. B. & Perrenod, S. C. Astrophys. J. 215, 717–722 (1977).

    Article  ADS  Google Scholar 

  8. Adam, M. G. Mon. Not. R. astr. Soc. 119, 460–474 (1959).

    Article  ADS  CAS  Google Scholar 

  9. Plaskett, H. H. Mon. Not. R. astr. Soc. 163, 183–207 (1973).

    Article  ADS  Google Scholar 

  10. Higgs, L. A. Mon. Not. R. astr. Soc. 121, 421–435 (1960).

    Article  ADS  CAS  Google Scholar 

  11. Plaskett, H. H. Mon. Not. R. astr. Soc. 179, 339–350 (1977).

    Article  ADS  Google Scholar 

  12. Allen, C. W. Astrophysical Quantities 3rd edn (Athlone, London, 1973).

    Google Scholar 

  13. Sadeh, D., Knowles, S. & Au, B. Science 161, 567–569 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Ball, J. A., Dickinson, D. F., Lilley, A. E., Penfield, H. & Shapiro, I. I. Science 167, 1755–1757 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Goldstein, R. M. Science 166, 598–601 (1969).

    Article  ADS  CAS  Google Scholar 

  16. Merat, P., Pecker, J.-C. & Vigier, J.-P. Astr. Astrophys. 30, 167–174 (1974).

    ADS  Google Scholar 

  17. Fürth, R. Phys. Lett. 221–223 (1964).

  18. Stephenson, L. M. Nature 204, 1179–1180 (1964).

    Article  ADS  Google Scholar 

  19. Gillieson, A. H. Can. J. Phys. 43, 57–73 (1965).

    Article  ADS  Google Scholar 

  20. Proisy, P. C.R. hebd. Acad. Sci. Paris B 265, 1145 (1967).

    Google Scholar 

  21. Mo, T. C. & Papas, C. H. Phys. Rev. D3, 1708–1712 (1971).

    Article  ADS  Google Scholar 

  22. Crawford, D. F. Nature 254, 313–314 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CRAWFORD, D. Photon decay in curved space-time. Nature 277, 633–635 (1979). https://doi.org/10.1038/277633a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277633a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing