Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oil preserved in fluid inclusions in Archaean sandstones

Abstract

Oil is generally thought to be geologically young, as it is thermodynamically unstable when subjected to elevated temperatures over long periods in open systems1,2. Indeed, almost all petroleum production comes from rocks younger than 400 million years (ref. 3). Although the oldest known oil occurs in rocks 1,650 Myr old4, suitable source rocks were abundant in older geological successions5 and circumstantial evidence suggests that some of these generated hydrocarbons early in their history6. Here, we report the discovery of oil preserved in fluid inclusions in sandstones dating back 3,000 Myr. Most inclusions lie within healed microfractures confined to individual detrital quartz grains, indicating that their oil was emplaced before Archaean or Palaeoproterozoic metamorphism sealed all voids and thus came from older (in some cases Archaean) sources. The fluid inclusions apparently acted as inert pressure vessels that protected the oil from subsequent degradation by circulating fluids and mineral catalysts. Because of its great age, this oil can potentially yield valuable information about the size and diversity of the early biosphere, particularly if it contains molecular fossils (biomarkers) of the primordial organisms from which it was derived.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs showing range of fluid inclusion types and fluorescence colours in healed microfractures in Archaean and earliest Palaeoproterozoic sandstones.
Figure 2: Photomicrographs and SEM images showing location of fluid inclusions in relation to grain boundaries, overgrowths and microfractures in Kaapvaal Archaean sandstones.
Figure 3: Photomicrographs and SEM images showing petrological setting of fluorescent fluid inclusions in Pilbara Archaean sandstones.

Similar content being viewed by others

References

  1. Quigley, T. M. & Mackenzie, A. S. The temperatures of oil and gas formation in the subsurface. Nature 333, 549–553 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Mango, F. D. The stability of hydrocarbons under the time-temperature conditions of petroleum genesis. Nature 352, 146–148 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bois, C., Bouche, P. & Pelet, R. Global geologic history and distribution of hydrocarbon reserves. Bull. Am. Assoc. Petrol. Geol. 66, 1248–1270 (1982).

    Google Scholar 

  4. Jackson, M. J., Powell, T. G., Summons, R. E. & Sweet, I. P. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years. Nature 322, 727–729 (1986).

    Article  ADS  CAS  Google Scholar 

  5. McKirdy, D. M. & Imbus, S. W. in Early Organic Evolution: Implications for Mineral and Energy Resources (eds Schidlowski, M. et al.) 176–192 (Springer, Berlin, 1992).

    Book  Google Scholar 

  6. Buick, R., Rasmussen, B. & Krapez, B. Archean oil: evidence for extensive hydrocarbon generation and migration 2.5–3.6 Ga. Bull. Am. Assoc. Petrol. Geol. 82, 50–69 (1998).

    CAS  Google Scholar 

  7. Mossman, D. J., Nagy, B. & Davis, D. W. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: implications for selected organic-rich deposits. Geochim. Cosmochim. Acta 57, 3521–3259 (1993).

    Article  Google Scholar 

  8. Rasmussen, B., Glover, J. E. & Alexander, R. Hydrocarbon rims on monazite in Permian-Triassic arenites, northern Perth Basin, Western Australia: pointers to the former presence of oil. Geology 17, 115–118 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Rasmussen, B. Fluorescent growth bands in irradiated-bitumen nodules: evidence of episodic hydrocarbon migration. Bull. Am. Assoc. Petrol. Geol. 81, 17–25 (1997).

    CAS  Google Scholar 

  10. Roedder, E. Fluid Inclusions (Mineral. Soc. Am., Washington DC, 1984).

    Book  Google Scholar 

  11. Pironon, J. & Pradier, B. Ultraviolet-fluorescence alteration of hydrocarbon fluid inclusions. Org. Geochem. 18, 501–509 (1992).

    Article  CAS  Google Scholar 

  12. Bjørlykke, K. & Egeberg, P. K. Quartz cementation in sedimentary basins. Bull. Am. Assoc. Petrol. Geol. 77, 1539–1548 (1993).

    Google Scholar 

  13. Zhang, J., Wong, T-F. & Davis, D. M. Micromechanics of pressure-induced grain crushing in porous rocks. J. Geophys. Res. 95, 341–352 (1990).

    Article  ADS  Google Scholar 

  14. Brantley, S. L., Evans, B., Hickman, S. L. & Crerar, D. A. Healing of microcracks in quartz: implications for fluid flow. Geology 18, 136–139 (1990).

    Article  ADS  Google Scholar 

  15. Laubach, S. E. Amethod to detect natural fracture strike in sandstones. Bull. Am. Assoc. Petrol. Geol. 81, 604–623 (1997).

    Google Scholar 

  16. Groshong, R. H. Low-temperature deformation mechanisms and their interpretation. Geol. Soc. Am. Bull. 100, 1329–1360 (1988).

    Article  ADS  Google Scholar 

  17. Robb, L. J., Charlesworth, E. G., Drennan, G. R., Gibson, R. L. & Tongu, E. L. Tectono-metamorphic setting and paragenetic sequence of Au-U mineralisation in the Archaean Witwatersrand Basin, South Africa. Aust. J. Earth Sci. 44, 353–371 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hobson, G. D. & Tiratsoo, E. N. Introduction to Petroleum Geology (Gulf Publ. Co., Houston, 1981).

    Google Scholar 

  19. Strauss, H. & Moore, T. B. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 709–798 (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  20. Ungerer, P. State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 16, 1–25 (1990).

    Article  CAS  Google Scholar 

  21. Price, L. C. Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 3261–3280 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Hoffmann, C. F., Henley, R. W., Higgins, N. C., Solomon, M. & Summons, R. E. Biogenic hydrocarbons in fluid inclusions from the Aberfoyle tin-tungsten deposit, Tasmania, Australia. Chem. Geol. 70, 287–299 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Newell, K. D., Burruss, R. C. & Palacas, J. G. Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent rift system, northeastern Kansas. Bull. Am. Assoc. Petrol. Geol. 77, 1922–1941 (1993).

    CAS  Google Scholar 

  24. George, S. C. & Jardine, D. R. Ketones in a Proterozoic dolerite sill. Org. Geochem. 21, 829–839 (1994).

    Article  CAS  Google Scholar 

  25. Hayes, J. M. in Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 291–301 (Princeton Univ. Press, 1983).

    Google Scholar 

  26. Knoll, A. H. & Holland, H. D. in Effects of Past Global Change on Life (ed. Stanley, S.) 1–17 (National Academy of Science Press, Washington DC, 1995).

    Google Scholar 

  27. Hayes, J. M. in Early Life on Earth: Nobel Symposium No. 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  28. Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2in the ocean. Nature 387, 272–275 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Summons, R. E. & Walter, M. R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci. 290-A, 212–244 (1990).

    Google Scholar 

  32. Martin, D. McB., Clendenin, C. W., Krapez, B. & McNaughton, N. J. Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara Cratons. J. Geol. Soc. Lond. 155, 311–322 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Ellis, T. S. Blake and B. Krapez for samples, M. Kassis for sample preparation, T. Vassallo for FTIR interpretation and P. J. Eadington, R. D. Müller, L. C. Ivany and B.Krapez for discussions and criticism. This work was supported by an ARC grant to R.B. and an ARC postdoctoral fellowship to B.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Buick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutkiewicz, A., Rasmussen, B. & Buick, R. Oil preserved in fluid inclusions in Archaean sandstones. Nature 395, 885–888 (1998). https://doi.org/10.1038/27644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27644

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing