Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transposition of Pseudomonas toluene-degrading genes and expression in Escherichia coli

Abstract

PLASMIDS contribute to the metabolic versatility of soil pseudomonads by specifying enzymes responsible for the oxidation of unusual organic substrates1,2. TOL plasmids determine an inducible sequence of enzymes that oxidise toluene, m-xylene, and p-xylene via alcohol and aldehyde intermediates to benzoate, m-toluate, and p-toluate, respectively, which are further metabolised by ring fission via the meta (or α-ketoacid) pathway—the enzymes of which also plasmid determined3–5. TOL plasmids found in soil Pseudomonas strains6 are notably heterogeneous in molecular properties7. Analogous observations on the heterogeneity of plasmids carrying the genes for TEM-type β-lactamase8 led to the demonstration that this gene was promiscuously transposable between plasmids of Gram-negative bacteria9. We have found that tol genes can be transposed to other plasmids, including the broad host range plasmid RP4. Such a derivative, RP4-tol, allows the expression of a specialised Pseudomonas pathway to be studied in Escherichia coli. In this foreign host tol gene function can be detected but at a much lower level than in Pseudomonas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wheelis, M. L. A. Rev. Microbiol. 29, 505–524 (1975).

    Article  CAS  Google Scholar 

  2. Chakrabarty, A. M. A. Rev. Genet. 10, 7–30 (1976).

    Article  CAS  Google Scholar 

  3. Williams, P. A. & Murray, K. J. Bact. 120, 416–423 (1974).

    CAS  Google Scholar 

  4. Wong, C. L. & Dunn, N. W. Genet. Res. 23, 227–232 (1974).

    Article  CAS  Google Scholar 

  5. Worsey, M. J. & Williams, P. A. J. Bact. 124, 7–13 (1975).

    CAS  PubMed  Google Scholar 

  6. Williams, P. A. & Worsey, M. J. J. Bact. 125, 818–828 (1976).

    CAS  PubMed  Google Scholar 

  7. Duggleby, C. J., Bayley, S. A., Worsey, M. J., Williams, P. A. & Broda, P. J. Bact. 130, 1274–1280 (1977).

    CAS  PubMed  Google Scholar 

  8. Hedges, R. W., Datta, N., Kontomichalou, P. & Smith, J. T. J. Bact. 117, 56–62 (1974).

    CAS  PubMed  Google Scholar 

  9. Hedges, R. W. & Jacob, A. E. Molec. gen. Genet. 132, 31–40 (1974).

    Article  CAS  Google Scholar 

  10. Jacoby, G. A. & Shapiro, J. A. in DNA Insertion Elements, Plasmids, and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S.) 639–656 (Cold Spring Harbor Laboratory, 1977).

    Google Scholar 

  11. Jacoby, G. A., Jacob, A. E. & Hedges, R. W. J. Bact. 127, 1278–1285 (1976).

    CAS  PubMed  Google Scholar 

  12. Stanisich, V. A. J. gen. microbiol 84, 332–342 (1974).

    Article  CAS  Google Scholar 

  13. White, G. P. & Dunn, N. W. Aust. J. biol. Sci. 30, 345–355 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Nakazawa, T., Hayashi, E., Yokota, T., Ebina, Y. & Nakazawa, A. J. Bact. 134, 270–277 (1978).

    CAS  PubMed  Google Scholar 

  15. Mylroie, J. R., Friello, D. A., Siemens, T. V. & Chakrabarty, A. M. Molec. gen. Genet. 157, 231–237 (1977).

    Article  Google Scholar 

  16. Friello, D. A., Mylroie, J. R., Gibson, D. T., Rogers, J. E. & Chakrabarty, A. M. J. Bact. 127, 1217–1224 (1976).

    CAS  PubMed  Google Scholar 

  17. Benson, S., Fennewald, M., Shapiro, J. & Huettner, C. J. Bact. 132, 614–621 (1977).

    CAS  PubMed  Google Scholar 

  18. Bayley, S. A. et al. Molec. gen. Genet. 154, 203–204 (1977).

    Article  CAS  Google Scholar 

  19. Broda, P. et al. in Microbiology-1978 (ed. Schlessinger, D.) 225–226 (American Society for Microbiology, Washington, D.C., 1978).

    Google Scholar 

  20. Ptashne, K. & Cohen, S. N. J. Bact. 122, 776–781 (1975).

    CAS  PubMed  Google Scholar 

  21. Perlman, D. & Rownd, R. H. J. Bact. 123, 1013–1034 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JACOBY, G., ROGERS, J., JACOB, A. et al. Transposition of Pseudomonas toluene-degrading genes and expression in Escherichia coli. Nature 274, 179–180 (1978). https://doi.org/10.1038/274179a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274179a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing