Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of interferon on lymphocyte transformation and nuclear antigen production by Epstein–Barr virus

Abstract

THE Epstein–Barr virus (EBV) can transform human and simian lymphocytes into blast cells which are then capable of indefinite growth in vitro1–4, with 85–100% of the cell population expressing the EBV-induced nuclear antigen (EBNA). Biological5–7 and molecular8 evidence shows clearly that there are at least two types of EBV strains, one of which (P3HR-1 EBV) does not transform human lymphocytes5–6 and seems to possess approximately 15% more DNA sequences than the highly transforming strain (B95-8 EBV)8. Furthermore, by infecting cells of the established EBV genome-negative BJA-B line9 it was also possible to show that whereas B95-8 EBV induces only EBNA in these cells, P3HR-1 EBV induces both EBNA and early antigen (EA)7. Thus, by using cells of BJA-B line, it now seems possible to investigate further several known viral functions10. We report here the results of a study in which we found that lymphocyte transformation by B95-8 strain of EBV could not be prevented by interferon. As shown below, this finding is further supported by the observation that in spite of the presence of interferon in very high doses (that is, up to 104 U ml−1), EBNA can still be produced in a fraction of the EBV-infected BJA-B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henle, W., Diehl, V., Kohn, G., Zur Hausen, H., and Henle, G., Science, 157, 1064–1065 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pope, J. H., Horne, M. K., and Scott, W., Int. J. Cancer, 3, 857–866 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Gerber, P., Whang-Peng, J., and Monroe, J. H., Proc. natn. Acad. Sci. U.S.A., 63, 740–747 (1969).

    Article  ADS  Google Scholar 

  4. Miller, G., Shope, T., Lisco, H., Stit, D., and Lipman, M., Proc. natn. Acad. Sci. U.S.A., 69, 383–387 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Menezes, J., Leibold, W., and Klein, G., Expl Cell Res., 92, 478–484 (1975).

    Article  CAS  Google Scholar 

  6. Miller, G., Robinson, J., Heston, L., and Lipman, M., Proc. natn. Acad. Sci. U.S.A., 71, 4006–4010 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Klein, G., Sudgen, B., Leibold, W., and Menezes, J., J. Intervirol., 3, 232–244 (1974).

    Article  CAS  Google Scholar 

  8. Pritchett, R. F., Hayward, S. D., and Kieff, E. D., J. Virol., 15, 556–569 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Menezes, J., Leibold, W., Klein, G., and Clements, G., Biomedicine, 22, 276–284 (1975).

    CAS  PubMed  Google Scholar 

  10. Menezes, J., Leibold, W., and Klein, G., in Oncogenesis and Herpesviruses (International Agency for Research in Cancer, Lyon, II (edit. by de Thé, G., Epstein, M. A., and zur Hausen, H.), 323–330 (1975).

    Google Scholar 

  11. Isaacks, A., Adv. Virus Res., 10, 1–38 (1963).

    Google Scholar 

  12. Todaro, G. J., and Baron, S., Proc. natn. Acad. Sci. U.S.A., 54, 752–756 (1965).

    Article  ADS  CAS  Google Scholar 

  13. Oxman, M. N., Rowe, W. P., and Black, P. H., Proc. natn. Acad. Sci. U.S.A., 57, 941–948 (1967).

    Article  ADS  CAS  Google Scholar 

  14. Oxman, M. N., in Interferons and Interferon Inducers (edit. by Finter, N. B.), 395–480 (North Holland, Amsterdam, 1973).

    Google Scholar 

  15. Lockart, R. Z., in The Herpesviruses (edit. by Kaplan, A.), 262–269 (Academic, New York, 1973).

    Google Scholar 

  16. Cantell, K., Kirvonen, S., Mogensen, K. E., and Pyhälä, L., in The Production and use of Interferon for the Treatment and Prevention of Human Virus Infections, In Vitro, Monograph No. 3, 35–38 (1974).

    Google Scholar 

  17. Dahl, H., and Degré, M., Acta path. microbiol. scand., B 80, 863–870 (1972).

    CAS  Google Scholar 

  18. Reedman, B. M., and Klein, G., Int. J. Cancer, 11, 499–520 (1973).

    Article  CAS  PubMed  Google Scholar 

  19. Takemoto, K. K., and Baron, S., Proc. Soc. exp. Biol. Med., 121, 670–675 (1966).

    Article  CAS  PubMed  Google Scholar 

  20. Oie, H. K., Easton, J. M., Ablashi, D. V., and Baron, S., Infect. Immun., 12, 1012–1017 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Joncas, J., Boucher, J., Boudreault, A., and Granger-Julien, M., Cancer Res., 33, 2142–2148 (1973).

    CAS  PubMed  Google Scholar 

  22. Oxman, M. N., et al., Virology, 32, 122–127 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MENEZES, J., PATEL, P., DUSSAULT, H. et al. Effect of interferon on lymphocyte transformation and nuclear antigen production by Epstein–Barr virus. Nature 260, 430–432 (1976). https://doi.org/10.1038/260430a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260430a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing