Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of sodium in neuronal uptake of monoamines and amino acid precursors

Abstract

IT is generally accepted that the neuronal re-uptake of monoaminergic neurotransmitters after their release into the synaptic cleft, inactivates transmitter action1,2. The amino acid precursors L-tyrosine and L-tryptophan are also taken up by neurones from the circulation3–5. Using in vitro models of these processes, it has been demonstrated that tricyclic anti-depressant drugs inhibit the uptake of both the amines6,7 and their precursors8 into synaptosomal fractions obtained from rat brain homogenates. Amino acids can be transported into cells by an Na+-dependent, Na+-independent or an Na+-inhibited transport system9. Monoamines, however, have been reported10,11 to have only an Na+-dependent system. Since information is lacking concerning the uptake of L-tyrosine and L-tryptophan, we have attempted to determine the role of Na+ ions in the uptake of the amino acid precursors compared with that of monoamines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Axelrod, J., Rec. Prog. Horm. Res., 21, 597–619 (1965).

    CAS  PubMed  Google Scholar 

  2. Iversen, L. L., Uptake and Storage of Noradrenaline in Sympathetic Nerves (Cambridge University Press, Cambridge, 1967).

    Google Scholar 

  3. Guroff, G., and Udenfriend, S., in Amino acid pools (edit. by Hidden, J. T.), 545–553 (Elsevier, Amsterdam, 1962).

    Google Scholar 

  4. Moir, A. T. B., and Eccleston, D. J., J. Neurochem., 15, 1093–1108 (1968).

    Article  CAS  Google Scholar 

  5. Tagliamonte, A., Biggio, G., Vargin, L., and Gessa, G. L., Life Sci., 12 (II), 277–287 (1973).

    Article  CAS  Google Scholar 

  6. Horn, A. S., Coyle, J. T., and Snyder, S. H., Molec. Pharmac., 7, 66–80 (1971).

    CAS  Google Scholar 

  7. White, T. D., and Paton, D. M., Biochim. biophys. Acta, 266, 116–127 (1972).

    Article  CAS  Google Scholar 

  8. Bruinvels, J., Eur. J. Pharmacol., 20, 231–237 (1972); Psychother. Psychosom., 23, 156–158 (1974).

    Article  CAS  Google Scholar 

  9. Christensen, H. N., in Membranes and Ion Transport, I, (edit. by Bittar, E. E.) 365–394 (Wiley-Interscience, London, 1970).

    Google Scholar 

  10. Bogdanski, D. F., Tissari, A., and Brodie, B. B., Life Sci., 7 (I), 419–428 (1968).

    Article  CAS  Google Scholar 

  11. Bogdanski, D. F., and Brodie, B. B., J. Pharmac. Exp. Ther., 165, 181–189 (1969).

    CAS  Google Scholar 

  12. Graham-Smith, D. G., and Parfitt, A. G., J. Neurochem., 17, 1339–1353 (1970).

    Article  Google Scholar 

  13. Blaszkowski, T. P., and Bogdanski, D. F., Life Sci., 11 (I), 867–876 (1972).

    Article  CAS  Google Scholar 

  14. Katz, R. I., and Kopin, I. J., Biochem. Pharmac., 18, 1935–1939 (1969).

    Article  CAS  Google Scholar 

  15. Douglas, W. W., Br. J. Pharmac., 34, 451–474 (1968).

    Article  CAS  Google Scholar 

  16. Nagatsu, T., Levitt, M., and Udenfriend, S., J. biol. Chem., 239, 2910–2917 (1964).

    CAS  PubMed  Google Scholar 

  17. Udenfriend, S., Zaltzman-Nirenberg, P., and Nagatsu, T., Biochem. Pharmac., 14, 837–845 (1965).

    Article  CAS  Google Scholar 

  18. Weiner, N., A. Rev. Pharmac., 10, 273–290 (1970).

    Article  CAS  Google Scholar 

  19. Gutman, Y., and Segal, J., Biochem. Pharmac., 21, 2664–2666 (1972).

    Article  CAS  Google Scholar 

  20. Morgenroth, V. H., III, Boadle-Biber, M., and Roth, R. H., Proc. natn. Acad. Sci. U.S.A., 11, 4283–4287 (1974).

    Article  ADS  Google Scholar 

  21. Keynes, R. D., and Lewis, P. R., J. Physiol., Lond., 114, 151–182 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BRUINVELS, J. Role of sodium in neuronal uptake of monoamines and amino acid precursors. Nature 257, 606–607 (1975). https://doi.org/10.1038/257606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing