Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite

Abstract

The study of radiation effects in solids is important for the development of ‘radiation-resistant’ materials for fission-reactor applications1. The effects of heavy-ion irradiation in the isostructural orthosilicates zircon (ZrSiO4), hafnon (HfSiO4) and thorite (ThSiO4) are particularly important because these minerals are under active investigation for use as a waste form for plutonium-239 resulting from the dismantling of nuclear weapons2,3,4. During ion irradiation, localized ‘cascades’ of displaced atoms can form as a result of ballistic collisions in the target material, and the temperature inside these regions may for a short time exceed the bulk melting temperature. Whether these cascades do indeed generate a localized liquid state5,6,7,8 has, however, remained unclear. Here we investigate the irradiation-induced decomposition of zircon and hafnon, and find evidence for formation of a liquid-like state in the displacement cascades. Our results explain the frequent occurrence of ZrO2 in natural amorphous zircon9,10,11,12. Moreover, we conclude that zircon-based nuclear waste forms should be maintained within strict temperature limits, to avoid potentially detrimental irradiation-induced amorphization or phase decomposition of the zircon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical amorphization dose as a function of temperature for zircon, hafnon and thorite.
Figure 2: Sequences of electron-diffraction patterns documenting the effects of ion irradiation at different temperatures.
Figure 3: High-resolution TEM image of zircon irradiated at 1,050 K (dose, 3 d.p.a.), showing randomly orientated ZrO2 nanocrystals (highlighted).

Similar content being viewed by others

References

  1. Seitz, F. Radiation effects in solids. Phys. Today 5, 6–9 (1952).

    Article  Google Scholar 

  2. Burakov, B. E. et al. in Scientific Basis for Nuclear Waste Management XIX (eds Murphy, W. M. & Knecht, D. A.) 33–40 (Plenum, New York, (1996)).

    Google Scholar 

  3. Ewing, R. C. et al. Zircon: A host phase for the disposal of weapons plutonium. J. Mater. Res. 10, 243–246 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Weber, W. J. et al. in Scientific Basis for Nuclear Waste Management XIX (eds Murphy, W. M. & Knecht, D. A.) 25–32 (Plenum, New York, (1996)).

    Google Scholar 

  5. Brinkman, J. A. On the nature of radiation damage in metals. J. Appl. Phys. 25, 961–970 (1954).

    Article  ADS  CAS  Google Scholar 

  6. de la Rubia, Diaz T. et al. Molecular dynamics simulation of displacement cascades in Cu and Ni: Thermal spike behavior. J. Mater. Res. 4, 579–586 (1989).

    Article  ADS  Google Scholar 

  7. Wang, S. X. et al. Ion beam-induced amorphization in the MgO-Al2O3-SiO2system: Part II — An empirical model. J. Non-Cryst. Solids (in the press).

  8. Sales, B. C. et al. Structural differences between the glass state and ion-beam-amorphized states of lead pyrophosphate. J. Non-Cryst. Solids 126, 179–193 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Ellsworth, S. et al. Energetics of radiation damage in natural zircon (ZrSiO4). Phys. Chem. Mineral. 21, 140–149 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Farges, F. The structure of metamict zircon: A temperature-dependent EXAFS study. Phys. Chem. Mineral. 20, 504–514 (1994).

    Article  ADS  CAS  Google Scholar 

  11. McLaren, A. C. et al. The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochim. Cosmochim. Acta 58, 993–1005 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Vance, E. R. & Anderson, B. W. Mineral Mag. 38, 605–613 (1972).

    Google Scholar 

  13. Weber, W. J. et al. The radiation-induced crystalline-to-amorphous transition in zircon. J. Mater. Res. 9, 688–698 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Keller, C. Untersuchungen über die germanate und silikate des typs ABO4 der vierwertigen elemente thorium bis americium. Nukleonic 5, 41–48 (1963).

    CAS  Google Scholar 

  15. Correia Neves, J. M. et al. High-hafnium members of the zircon-hafnon series from the granite pegmatites of Zambezia, Mozambique. Contrib. Mineral. Petrol. 48, 73–80 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Speer, J. A. in Reviews in Mineralogy Vol. 5, Orthosilicates (ed. Ribbe, P. H.) 67–132 (Mineralogical Soc. Am. Washington DC, (1982)).

    Google Scholar 

  17. Ziegler, J. F. Transport and Range of Ions in MatterVersion 96.01 (IBM-Research, Yorktown, NY, (1996)).

    Google Scholar 

  18. Weber, W. J. et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. (in the press).

  19. Abe, H. et al. Amorphization in aluminum oxide induced by ion irradiation. Nucl. Instrum. Meth. Phys. Res. B127/128, 170–175 (1997).

    Article  ADS  Google Scholar 

  20. Meldrum, A. et al. Heavy-ion irradiation effects in the ABO4 orthosilicates: decomposition, amorphization, and recrystallization. Phys. Rev. B (submitted).

  21. Heinisch, H. L. & Singh, B. N. On the structure of irradiation induced collision cascades in metals as a function of recoil energy and crystal structure. Phil. Mag. 67, 407–424 (1993).

    Article  Google Scholar 

  22. Bacon, D. J. & Diaz de la Rubia, T. Molecular dynamics computer simulations of displacement cascades in metals. J. Nucl. Mater. 216, 275–290 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Levin, E. M. & McMurdie, H. F. Phase Diagrams for Ceramists, 1975 Supplement (Am. Ceramic Soc., Columbus, OH, (1975)).

    Google Scholar 

  24. Caro, M. et al. Thermal behavior of radiation damage cascades via the binary collision approximation: Comparison with molecular dynamics results. J. Mater. Res. 5, 2652–2657 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Koponen, I. Energy transfer between electrons and ions in dense displacement cascades. Phys. Rev. B 47, 14011–14019 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Kirkaldy, J. S. & Young, D. J. Diffusion in the Condensed State (Institute of Metals, London, (1987)).

    Google Scholar 

  27. Weber, W. J. Radiation-induced defects and amorphization in zircon. J. Mater. Res. 5, 2687–2697 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara craton of Australia. Nature 375, 574–577 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Babsail, L. et al. Helium-ion implanted waveguides in zircon. Nucl. Instrum. Meth. Phys. Res. B59/60, 1219–1222 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Division of Materials Sciences, Basic Energy Sciences, and the Environmental Management Sciences Program, US-DOE, with Lockheed Martin Energy Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meldrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meldrum, A., Zinkle, S., Boatner, L. et al. A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite. Nature 395, 56–58 (1998). https://doi.org/10.1038/25698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25698

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing