Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship of α-adrenergic receptors in rat pineal gland to drug-induced stimulation of phospholipid metabolism

Abstract

NORADRENALINE produces increased uptake of 32Pi into acidic phospholipids in the nervous system1–4, and neurotransmitters and other stimuli do so in various tissues5–7. The rat pineal gland responds to noradrenaline in similar fashion8–10. We have shown already that the mechanism by which noradrenaline stimulates phospholipid metabolism in the pineal gland does not depend on protein synthesis and does not involve either β-adrenergic receptors or cyclic AMP10. We also observed that the β-adrenergic receptor blocking agent propranolol not only failed to counteract the influence of noradrenaline, but itself markedly enhanced the incorporation of 32Pi into phospholipids to give a labelling pattern distinct from that produced by noradrenaline10,11. We concluded that this action of propranolol was due to its local anaesthetic or membrane perturbing property, since sotalol, a β-adrenergic receptor blocking agent without these other effects12, had no influence on phospholipid metabolism. In addition, a series of local anaesthetics yield effects comparable with those of propranolol13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hokin, M. R., J. Neurochem., 16, 127–134 (1969).

    Article  CAS  Google Scholar 

  2. Sneddon, J. M., and Keen, P., Biochem. Pharmac., 19, 1297–1306 (1970).

    Article  CAS  Google Scholar 

  3. Abdel-Latif, A. A., Yau, S. J., and Smith, J. P., J. Neurochem., 22, 383–393 (1974).

    Article  CAS  Google Scholar 

  4. Friedel, R. O., Johnson, J. R., and Schanberg, S. M., J. Pharmac. exp. Ther., 184, 583–589 (1973).

    CAS  Google Scholar 

  5. Hokin, L. E., Int. Rev. Cytol., 23, 187–208 (1968).

    Article  CAS  Google Scholar 

  6. Hawthorne, J. N., and Kai, M., in Handbook of neurochemistry, (edit. by Lajtha, A.), 3, 491–508 (Plenum, New York, 1970).

    Google Scholar 

  7. Lapetina, E. G., and Michell, R. H., FEBS Lett., 31, 1–10 (1973).

    Article  CAS  Google Scholar 

  8. Berg, G. R., and Klein, D. C., J. Neurochem., 19, 2519–2532 (1972).

    Article  CAS  Google Scholar 

  9. Muraki, T., Biochem. Pharmac., 21, 2536–2539 (1972).

    Article  CAS  Google Scholar 

  10. Eichberg, J., Shein, H. M., and Hauser, G., Biochem. Soc. Trans., 1, 352–359 (1973); Eichberg, J., Shein, H. M., Schwartz, M., and Hauser, G., J. biol. Chem., 248, 3615–3622 (1973).

    Article  CAS  Google Scholar 

  11. Hauser, G., and Eichberg, J., J. biol. Chem. (in the press).

  12. Harrison, D. C., Circulatory effects and clinical uses of β-adrenergic drugs, 1–19 (Excerpta Medica, Amsterdam, 1971).

    Google Scholar 

  13. Eichberg, J., and Hauser, G., Biochem. biophys. Res. Commun., 60, 1460–1467 (1974).

    Article  CAS  Google Scholar 

  14. De Torrentegui, G., and Berthet, J., Biochim. biophys. Acta, 116, 467–476 (1966).

    Article  Google Scholar 

  15. Stein, J. M., and Hales, C. N., Biochem. J., 128, 531–541 (1972).

    Article  CAS  PubMed Central  Google Scholar 

  16. Robison, G. A., Butcher, R. W., and Sutherland, E. W., Cyclic AMP, 145–231 (Academic Press, New York, 1971).

    Book  Google Scholar 

  17. Oron, Y., Lowe, M., and Selinger, Z., FEBS Lett., 34, 198–200 (1973).

    Article  CAS  Google Scholar 

  18. Michell, R. H., and Jones, L. M., Biochem. J., 138, 47–51 (1974).

    Article  CAS  PubMed Central  Google Scholar 

  19. Canessa de Scarnati, O., and Lapetina, E. G., Biochim. biophys. Acta, 360, 298–305 (1974).

    Article  CAS  Google Scholar 

  20. Klein, D. C., and Weller, J. L., J. Pharmac. exp. Ther., 186, 516–527 (1973).

    CAS  Google Scholar 

  21. Axelrod, J., Science, 184, 1341–1348 (1974).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  22. Batzri, S., Selinger, Z., Schramm, M., and Robinovitch, M. R., J. biol. Chem., 248, 361–368 (1973); Selinger, Z., Batzri, S., Eimerl, S., and Schramm, M., J. biol Chem., 248, 369–372 (1973).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAUSER, G., SHEIN, H. & EICHBERG, J. Relationship of α-adrenergic receptors in rat pineal gland to drug-induced stimulation of phospholipid metabolism. Nature 252, 482–483 (1974). https://doi.org/10.1038/252482a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/252482a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing