Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye

Abstract

In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along the dorsoventral midline, forming a line of mirror image symmetry called the equator1. The molecular mechanism establishing the equator is not fully understood, but it involves the transcription factors2 encoded by the Iroquois gene complex3. The Iroquois genes are expressed in the dorsal half of the eye2 and here we show that they regulate the expression of the secreted molecule Fringe. A boundary between fringe -expressing and fringe -non-expressing cells is essential, from the time of the second larval instar, for eye growth and formation of the equator. Boundaries of fringe expression determine where the transmembrane receptor Notch is activated4,5. We find that Notch is activated at the dorsoventral midline, where it is required to promote growth and set up the axis of mirror symmetry. As boundaries of fringe expression and Notch activation are also important during Drosophila wing formation6 and vertebrate somitogenesis7,8,9, we suggest that these boundaries constitute a general mechanism that directs growth and patterning of large fields of cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dorsoventral organization of the eye disc.
Figure 2: Consequences of modifying Notch activity in eye development.
Figure 3: Accumulation of Notch ligands and restriction of Notch activation.
Figure 4: Requirements for fringe during eye development.
Figure 5: Cell-lineage analysis in the eye disc.

Similar content being viewed by others

References

  1. Wolff, T. & Ready, D. F. Pattern Formation in the Drosophila Retina 1277–1326 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1993).

    Google Scholar 

  2. McNeill, H., Yang, C.-H., Brodsky, M., Ungos, J. & Simon, M. A. mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorso-ventral border in the Drosophila eye. Genes Dev. 11, 1073–1082 (1997).

    Article  CAS  Google Scholar 

  3. Gómez-Skarmeta, J. L., Díez del Corral, R., de la Calle, E., Ferrer-Marco, D. & Modolell, J. araucan and caupolican, two members of the novel Iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95–105 (1996).

    Article  Google Scholar 

  4. Irvine, K. D. & Wieschaus, E. fringe, a boundary-specific signalling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  Google Scholar 

  5. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Irvine, K. D. & Vogt, T. F. Dorso-ventral signalling in limb development. Curr. Opin. Cell Biol. 9, 867–876 (1997).

    Article  CAS  Google Scholar 

  7. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe -deficient mice. Nature 394, 374–377 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Evrand, Y. et al. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  ADS  Google Scholar 

  9. Zeller, R. & Duboule, D. Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence. Bioessays 19, 541–546 (1997).

    Article  CAS  Google Scholar 

  10. Brodsky, M. H. & Steller, H. Positional information along the dorsal-ventral axis of the Drosophila eye graded expression of the four-jointed gene. Dev. Biol. 173, 428–446 (1996).

    Article  CAS  Google Scholar 

  11. Heberlein, U., Borod, E. R. & Chanut, F. A. Dorsoventral patterning in the Drosophila retina by wingless. Development 125, 567–577 (1988).

    Google Scholar 

  12. Reifegerste, R., Ma, C. & Moses, K. Apolarity field is established early in the development of the Drosophila compound eye. Mech. Dev. 68, 69–79 (1997).

    Article  CAS  Google Scholar 

  13. Wehrli, M. & Tomlinson, A. Independent regulation of anterior/posterior and equatorial/polar polarity in the Drosophila eye; evidence for the involvement of Wnt signalling in the equatorial/polar axis. Development 125, 1421–1432 (1998).

    CAS  PubMed  Google Scholar 

  14. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  15. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch protein define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  Google Scholar 

  16. Klein, T., Brennan, K. & Martinez-Arias, A. An intrinsic dominant negative activity of Serrate that is modulated during wing development in Drosophila. Dev. Biol. 186, 123–134 (1997).

    Article  Google Scholar 

  17. Kim, J. et al. Integration of positional signals and regulation of wing formation by Drosophila vestigial gene. Nature 382, 133–138 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signalling. Science 268, 225–232 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Diaz-Benjumea, G. & Cohen, S. M. Interactions between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 742–752 (1993).

    Article  Google Scholar 

  20. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996).

    Article  CAS  Google Scholar 

  21. Campos-Ortega, J. A. & Waitz, M. Cell clones and pattern formation: developmental restrictions in the compound eye of Drosophila. Dev. Biol. 184, 155–170 (1978).

    CAS  Google Scholar 

  22. Baker, W. K. Aclonal analysis reveals early developmental restrictions in the Drosophila head. Dev. Biol. 62, 447–463 (1978).

    Article  CAS  Google Scholar 

  23. Lawrence, P. A. & Green, S. M. Cell lineage in the developing retina of Drosophila. Dev. Biol. 71, 142–152 (1979).

    Article  CAS  Google Scholar 

  24. de Celis, J. F., Tyler, D., de Celis, J. & Bray, S. Notch signalling mediates segmentation of the Drosophila leg. Development 125, 4617–4626 (1998).

    CAS  PubMed  Google Scholar 

  25. Cubas, P., de Celis, J. F., Campuzano, S. & Modolell, J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5, 996–1008 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ashburner and P. Lawrence, in whose laboratories this work has been carried out; P. Aroca, S. Bray, K. Irvine, F. Diaz-Benjumea, J. Modolell and U. Walldorf for sharing different reagents and flies; and M. Freeman, P. A. Lawrence, S. Russell and members of our laboratories for critical reading of the manuscript. M. D. is supported by an EMBO fellowship and J.F.C. by a Wellcome Trust project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose F. de Celis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, M., Celis, J. A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396, 276–278 (1998). https://doi.org/10.1038/24402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24402

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing