Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Motion integration in a thalamic visual nucleus

Abstract

Thalamic nuclei have long been regarded as passive relay stations for sensory information en route to higher level processing in the cerebral cortex. Recently, physiological and theoretical studies have reassessed the role of the thalamus and it has been proposed that thalamic nuclei may actively participate with cortical areas in processing specific information1,2,3,4. In support of this idea, we now show that a subset of neurons in an extrageniculate visual nucleus, the lateral-posterior pulvinar complex, can signal the true direction of motion of a plaid pattern, indicating that thalamic cells can integrate different motion signals into a coherent moving percept5,6,7,8. This is the first time that these computations have been found to occur outside the higher-order cortical areas5,6,9,10. Our findings implicate extrageniculate cortico–thalamo–cortical loops in the dynamic processing of image motion, and, more generally, as basic computational modules involved in analysing specific features of complex visual scenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polar graphs illustrating the responses of LP-pulvinar neurons to gratings (solid line) and plaid patterns (dashed line) drifting in 12 directions of motion.
Figure 2: Scatter plot of partial correlations for pattern and component selectivity: filled symbols, neurons in the LP-pulvinar; open circles, area 17; and open squares, PMLS cortex.
Figure 3: Effect of deactivating the AEV cortex on a pattern-motion selective neuron in the medial part of the lateral posterior nucleus.
Figure 4: The effects of cortical ablations.

Similar content being viewed by others

References

  1. Mumford, D. On the computational architecture of the neocortex 1. The role of the thalamo–cortical loop. Biol. Cybern. 65, 135–145 (1991).

    Article  CAS  Google Scholar 

  2. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    Article  CAS  Google Scholar 

  3. Miller, R. Cortico–thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol. Cybern. 75, 623–275 (1996).

    Google Scholar 

  4. Singer, W. Anew job for the thalamus. Nature 369, 444–445 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Scannell, J. W. et al. Visual motion processing in the anterior ectosylvian sulcus. J. Neurophysiol. 76, 895–907 (1996).

    Article  CAS  Google Scholar 

  7. Stoner, G. R. & Albright, T. D. Neural correlates of perceptual motion coherence. Nature 358, 412–414 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. The analysis of moving visual patterns. Pont. Acad. Sci. Scr. Varia. 54, 117–151 (1985).

    Google Scholar 

  9. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J.Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  10. Rodman, H. R. & Albright, T. D. Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Exp. Brain Res. 75, 53–64 (1989).

    Article  CAS  Google Scholar 

  11. Stoner, G. R. & Albright, T. D. in Visual Detection of Motion (eds Smith, A. T. & Snowden, R. J.) 253–290 (Academic, London, 1994).

    Google Scholar 

  12. Harth, E., Unnikrishnan, K. P. & Pandya, A. S. The inversion of sensory processing by feedback pathways: a model of visual cognitive functions. Science 237, 184–187 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Mumford, D. in Large-scale Neuronal Theories of the Brain (eds Koch, C. & Davis, J. L.) 125–152 (MIT Press, Massachusetts, 1994).

    Google Scholar 

  15. Chalupa, L. M. in Vision and Visual DysfunctionVol. 4 (ed. Leventhal, A. G.) 140–159 (CRC Press, Boca Raton, 1991).

    Google Scholar 

  16. Guillery, R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J. Anat. 187, 583–592 (1995).

    PubMed  PubMed Central  Google Scholar 

  17. Robinson, D. L. & Peterson, S. E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  CAS  Google Scholar 

  18. Chalupa, L. M., Coyle, R. S. & Lindsley, D. B. Effect of pulvinar lesions on visual pattern discrimination in monkeys. J. Neurophysiol. 39, 354–369 (1976).

    Article  CAS  Google Scholar 

  19. Fabre-Thorpe, M., Viévard, A. & Buser, P. Role of the extra-geniculate pathway in visual guidance II. Effects of lesioning the pulvinar-lateral posterior thalamic complex in the cat. Exp. Brain Res. 62, 596–606 (1986).

    Article  CAS  Google Scholar 

  20. Casanova, C. & Savard, T. Responses to moving texture patterns of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. Neuroscience 70, 439–447 (1996).

    Article  CAS  Google Scholar 

  21. Payne, B. R. Evidence for visual cortical area homologues in cat and macaque monkey. Cerebral Cortex 3, 1–25 (1993).

    Article  CAS  Google Scholar 

  22. Gizzi, M. S., Katz, E., Schumer, R. A. & Movshon, J. A. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J. Neurophysiol. 63, 1529–1543 (1990).

    Article  CAS  Google Scholar 

  23. Mucke, L., Norita, M., Benedek, G. & Creutzfeldt, O. D. Physiological and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp. Brain Res. 46, 1–11 (1982).

    Article  CAS  Google Scholar 

  24. Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Computational models of thalamocortical augmenting responses. J. Neurosci. 18, 6444–6465 (1998).

    Article  CAS  Google Scholar 

  25. Scannel, J. W., Burns, J. A. P. C., O'Neill, M. A., Hilgetag, C. C. & Young, M. P. The organization of the thalamo–cortical network of the cat. Soc. Neurosci. Abstr. 23, 1306 (1997).

    Google Scholar 

  26. Nowlan, J. J. & Sejnowski, T. J. Aselection model for motion processing in area MT of primates. J.Neurosci. 15, 1195–1214 (1995).

    Article  CAS  Google Scholar 

  27. Cusick, C. G., Scripter, J. L., Darensbourg, J. G. & Weber, J. T. Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J. Comp. Neurol. 336, 1–30 (1993).

    Article  CAS  Google Scholar 

  28. Creutzfeldt, O. D. Extrageniculate-striate visual mechanisms: compartmentalization of visual functions. Progr. Brain Res. 75, 307–320 (1988).

    Article  CAS  Google Scholar 

  29. Minville, K. & Casanova, C. Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat's lateral posterior-pulvinar complex. Neuroscience 84, 699–711 (1998).

    Article  CAS  Google Scholar 

  30. Palmer, L. A., Rosenquist, A. C. & Tusa, R. J. The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol. 177, 237–256 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by MRC and FCAR grants to C.C. We thank J. A. Movshon for providing the analysis software for the classification of neuronal responses and for commenting on the manuscript, and C. L. Baker Jr, A. M. Herbert, J. Faubert and M. von Grünau for discussions and suggestions. FRSQ provided most of the salary support for C.C., L.M. and A.D. were supported in part by FCAR-Centre and FRSQ-FCAR fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabet, L., Desautels, A., Minville, K. et al. Motion integration in a thalamic visual nucleus. Nature 396, 265–268 (1998). https://doi.org/10.1038/24382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24382

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing