Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines

Abstract

FMS-like tyrosine kinase-3 (FLT3) is a new therapeutic target for acute myelocytic leukemia (AML), because FLT3 mutations are the most common genetic alterations in AML and are directly related to leukemogenesis. We studied cytotoxic interactions of a FLT3 inhibitor, PKC412, with eight conventional antileukemic agents (cytarabine, doxorubicin, idarubicin, mitoxantrone, etoposide, 4-hydroperoxy-cyclophosphamide, methotrexate and vincristine) using three leukemia cell lines carrying FLT3 mutations (MOLM13, MOLM14 and MV4-11) and five leukemia cell lines without FLT3 mutations (KOPB-26, THP-1, BALL-1, KG-1 and U937). PKC412 showed synergistic effects with all agents studied except methotrexate for FLT3-mutated cell lines in isobologram analysis. In contrast, PKC412 was rather antagonistic to most drugs, except for 4-hydroperoxy-cyclophosphamide and vincristine, in leukemia cell lines without FLT3 mutations. Cell-cycle analysis revealed that PKC412 induced G1 arrest in leukemia cell lines carrying FLT3 mutations, whereas it arrested cells in G2/M phase in the absence of FLT3 mutations, which may underlie the divergent cytotoxic interactions. These results suggest that the simultaneous administration of PKC412 and other agents except methotrexate is clinically effective against FLT3 mutation-positive leukemias, whereas it would be of little benefit for FLT3 mutation-negative leukemias. Our findings may be of help for the design of PKC412-based combination chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  2. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994; 83: 10–25.

    CAS  PubMed  Google Scholar 

  3. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  4. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D . Murine FLT3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 1991; 6: 1641–1650.

    CAS  PubMed  Google Scholar 

  5. Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  7. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  8. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  9. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  10. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  11. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medial Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  12. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  13. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19: 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  14. Griffin JD . FLT3 tyrosine kinase as a target in acute leukemias. Hematol J 2004; 5: 188–190.

    Article  Google Scholar 

  15. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891.

    Article  CAS  PubMed  Google Scholar 

  16. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    Article  CAS  PubMed  Google Scholar 

  17. Levis M, Small D . FLT3 tyrosine kinase inhibitors. Int J Hematol 2005; 82: 100–107.

    Article  CAS  PubMed  Google Scholar 

  18. Propper DJ, McDonald AC, Man A, Thavasu P, Balkwill F, Braybrooke JP et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 2001; 19: 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  19. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  20. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006; 108: 3674–3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763–2767.

    Article  CAS  PubMed  Google Scholar 

  22. Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003; 102: 795–801.

    Article  CAS  PubMed  Google Scholar 

  23. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  24. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 1997; 11: 1469–1477.

    Article  CAS  PubMed  Google Scholar 

  26. Santoli D, Yang YC, Clark SC, Kreider BL, Caracciolo D, Rovera G . Synergistic and antagonistic effects of recombinant human interleukin (IL)-3, IL-1α, granulocyte and macrophage colony-stimulating factors (G-CSF and M-CSF) on the growth of GM-CSF-dependent leukemic cell lines. J Immunol 1987; 139: 3348–3354.

    CAS  PubMed  Google Scholar 

  27. Super HG, Strissei PL, Sobulo OM, Burian D, Reshmi SC, Roe B et al. Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. Genes Chrom Cancer 1997; 20: 185–195.

    Article  CAS  PubMed  Google Scholar 

  28. Odero MD, Zeleznik-Le NJ, Chinwalla V, Rowley JD . Cytogenetic and molecular analysis of the acute monocytic leukemia cell line THP-1 with an MLL-AF9 translocation. Genes Chrom Cancer 2000; 29: 333–338.

    Article  CAS  PubMed  Google Scholar 

  29. Kano Y, Sakamoto S, Kakahara T, Akutsu M, Inoue Y, Miura Y . In vitro effects of amsacrine in combination with other anti-cancer agents. Leukemia Res 1992; 15: 1059–1066.

    Article  Google Scholar 

  30. Steel GG, Peckham MJ . Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 1979; 5: 85–93.

    Article  CAS  PubMed  Google Scholar 

  31. Kano Y, Ohnuma T, Okano T, Holland JF . Effects of vincristine in combination with methotrexate and other antitumor agents in human acute lymphoblastic leukemia cells in culture. Cancer Res 1988; 48: 351–356.

    CAS  PubMed  Google Scholar 

  32. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  33. Kano Y, Akutsu M, Tsunoda S, Suzuki K, Adachi K . In vitro schedule-dependent interaction between peclitaxel and SN-38 (the active metabolite of irrinotecan) in human carcinoma cell lines. Cancer Chemother Pharmacol 1998; 42: 91–98.

    Article  CAS  PubMed  Google Scholar 

  34. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120–124.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang J, Paez JG, Lee JC, Bo R, Stone RM, DeAngelo DJ et al. Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood 2004; 104: 1855–1888.

    Article  CAS  PubMed  Google Scholar 

  36. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH . FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 2003; 9: 4483–4493.

    CAS  PubMed  Google Scholar 

  37. Scheijen B, Ngo HT, Kang H, Griffin JD . FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004; 23: 3338–3349.

    Article  CAS  PubMed  Google Scholar 

  38. Levis M, Pham R, Smith BD, Small D . In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004; 104: 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  39. Yee KW, Schittenhelm M, O'Farrell AM, Town AR, McGreevey L, Bainbridge T et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 2004; 104: 4202–4209.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by High-Tech Research Center Project for Private Universities: Matching Fund Subsidy from MEXT 2002-2006, and grants from Mitsubishi Pharma Research Foundation and Vehicle Racing Commemorative Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Furukawa.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, Y., Vu, H., Akutsu, M. et al. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia 21, 1005–1014 (2007). https://doi.org/10.1038/sj.leu.2404593

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404593

Keywords

This article is cited by

Search

Quick links