Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

T-ALL

Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is associated with chromosomal aberrations characterized by juxtaposition of proto-oncogenes to T-cell receptor gene loci (TCR), resulting in the deregulated transcription of these proto-oncogenes. Here, we describe the molecular characterization of a novel chromosomal aberration, inv(14)(q11.2q32.31), in a T-ALL sample, involving the recently described BCL11B gene and the TCRD locus. The inversion joined the 5′ part of BCL11B, including exons 1–3, to the TRDD3 gene segment of the TCRD locus, whereas the reciprocal breakpoint fused the TRDV1 gene segment to the fourth exon of BCL11B. The TRDV1-BCL11B joining region was 1344 bp long and contained fragments derived from 20q11.22, 3p21.33 and from 11p12, indicating the complex character of this aberration. A strong expression of in-frame transcripts with truncated BCL11B and TCRD constant region (TRDC) were observed, but in contrast to normal T cells and other T-ALL samples, no wild-type BCL11B transcripts were detected in the T-ALL sample. Screening of 37 other T-ALLs revealed one additional case with expression of the BCL11B-TRDC fusion transcript. As BCL11B appears to play a key role in T-cell differentiation, BCL11B disruption and disturbed expression may contribute to the development of T-cell malignancies in man.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Blom B, Verschuren MC, Heemskerk MH, Bakker AQ, van Gastel-Mol EJ, Wolvers-Tettero IL et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood 1999; 93: 3033–3043.

    CAS  Google Scholar 

  2. Breit TM, Wolvers Tettero IL, Hahlen K, van Wering ER, van Dongen JJ . Extensive junctional diversity of gamma delta T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia 1991; 5: 1076–1086.

    CAS  Google Scholar 

  3. Hansen Hagge TE, Yokota S, Bartram CR . Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood 1989; 74: 1762–1767.

    CAS  PubMed  Google Scholar 

  4. Breit TM, Wolvers Tettero IL, Beishuizen A, Verhoeven MA, van Wering ER, van Dongen JJ . Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 1993; 82: 3063–3074.

    CAS  Google Scholar 

  5. Przybylski G, Oettle H, Ludwig WD, Siegert W, Schmidt CA . Molecular characterization of illegitimate TCR delta gene rearrangements in acute myeloid leukaemia. Br J Haematol 1994; 87: 301–307.

    Article  CAS  Google Scholar 

  6. Schmidt CA, Przybylski G, Tietze A, Oettle H, Siegert W, Ludwig WD . Acute myeloid and T-cell acute lymphoblastic leukaemia with aberrant antigen expression exhibit similar TCRδ gene rearrangements. Br J Haematol 1996; 92: 929–936.

    Article  CAS  Google Scholar 

  7. Rabbitts TH . Chromosomal translocations in human cancer. Nature 1994; 372: 143–149.

    Article  CAS  Google Scholar 

  8. Hwang LY, Baer RJ . The role of chromosome translocations in T cell acute leukemia. Curr Opin Immunol 1995; 7: 659–664.

    Article  CAS  Google Scholar 

  9. Duro D, Bernard O, Della Valle V, Leblanc T, Berger R, Larsen CJ . Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21–22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res 1996; 56: 848–854.

    CAS  PubMed  Google Scholar 

  10. Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001; 98: 3413–3420.

    Article  CAS  Google Scholar 

  11. Avram D, Fields A, Senawong T, Topark-Ngarm A, Leid M . COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J 2002; 368: 555–563.

    Article  CAS  Google Scholar 

  12. Avram D, Fields A, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M . Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 2000; 275: 10315–10322.

    Article  CAS  Google Scholar 

  13. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y et al. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 2003; 4: 533–539.

    Article  CAS  Google Scholar 

  14. O'Connor R, Cesano A, Lange B, Finan J, Nowell PC, Clark SC et al. Growth factor requirements of childhood acute T-lymphoblastic leukemia: correlation between presence of chromosomal abnormalities and ability to grow permanently in vitro. Blood 1991; 77: 1534–1545.

    CAS  PubMed  Google Scholar 

  15. van Dongen JJ, Wolvers-Tettero IL . Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta 1991; 198: 1–91.

    Article  CAS  Google Scholar 

  16. Langerak AW, Wolvers-Tettero IL, van Dongen JJ . Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999; 13: 965–974.

    Article  CAS  Google Scholar 

  17. Moreau EJ, Langerak AW, van Gastel-Mol EJ, Wolvers-Tettero IL, Zhan M, Zhou Q et al. Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1999; 13: 1620–1626.

    Article  CAS  Google Scholar 

  18. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  19. Gesk S, Martin-Subero JI, Harder L, Luhmann B, Schlegelberger B, Calasanz MJ et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia 2003; 17: 738–745.

    Article  CAS  Google Scholar 

  20. Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartam CR et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001; 97: 3875–3881.

    Article  CAS  Google Scholar 

  21. Soulier J, Pierron G, Vecchione D, Garand R, Brizard F, Sigaux F et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 2001; 31: 248–254.

    Article  CAS  Google Scholar 

  22. Marculescu R, Le T, Simon P, Jaeger U, Nadel B . V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med 2002; 195: 85–98.

    Article  CAS  Google Scholar 

  23. Pekarsky Y, Hallas C, Croce CM . Molecular basis of mature T-cell leukemia. JAMA 2001; 286: 2308–2314.

    Article  CAS  Google Scholar 

  24. Mitelman F, Johansson B, Mertens F . Mitelman Database of Chromosome Aberrations in Cancer. In: http://cgap.nci.nih.gov/Chromosomes/Mitelman 2003.

  25. Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood 2001; 97: 3612–3620.

    Article  CAS  Google Scholar 

  26. Baer R, Chen KC, Smith SD, Rabbitts TH . Fusion of an immunoglobulin variable gene and a T cell receptor constant gene in the chromosome 14 inversion associated with T cell tumors. Cell 1985; 43: 705–713.

    Article  CAS  Google Scholar 

  27. Reinhardt P, Maschmeyer G, Schulze G, Fleischer C, Ellerbrok H, Schlegelberger B et al. First non-imported HTLV-1 positive adult T cell leukemia/lymphoma (ATLL) in Germany. Leukemia 1999; 13: 1296–1297.

    Article  CAS  Google Scholar 

  28. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  Google Scholar 

  29. Bezrookove V, van Zelderen-Bhola SL, Brink A, Szuhai K, Raap AK, Barge R et al. A novel t(6;14)(q25-q27;q32) in acute myelocytic leukemia involves the BCL11B gene. Cancer Genet Cytogenet 2004; 149: 72–76.

    Article  CAS  Google Scholar 

  30. Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T et al. Homozygous deletions and point mutations of the Rit1/Bcl11b gene in gamma-ray induced mouse thymic lymphomas. Biochem Biophys Res Commun 2003; 301: 598–603.

    Article  CAS  Google Scholar 

  31. Nagel S, Kaufmann M, Drexler HG, MacLeod RA . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  32. Sakata J, Inoue J, Ohi H, Kosugi-Okano H, Mishima Y, Hatakeyama K . Involvement of V(D)J recombinase in generation of intragenic deletions of Rit1/Bcl11b tumor suppressor gene in {gamma}-ray-induced thymic lymphomas and in normal thymus of the mouse. Carcinogenesis 2004; 25: 1069–1075.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Kathrin Aßmus, Jeanette Bahr, Ingrid Wolvers-Tettero, Dorit Schuster and Claudia Becher for excellent technical assistance. We thank Dr M Dyer from the MRC Toxicology Unit/Leicester University, UK for valuable discussions. This work was supported by the Committee for Scientific Research, Poland (KBN 2 P05A 057 26; GKP), the Alfried Krupp von Bohlen und Halbach Stiftung (GKP and CAS), the German Josê Carreras Leukemia Foundation (GKP and CAS) the Dutch Cancer Society (EMCR 2002-2707, WAD, BV, JJM v D and AWL), the Haak Bastiaanse Kuneman Foundation (AWL), the Hensel Stiftung Kiel (RS) and the Deutsche Krebshilfe (RS and JIM-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G K Przybylski.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przybylski, G., Dik, W., Wanzeck, J. et al. Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia 19, 201–208 (2005). https://doi.org/10.1038/sj.leu.2403619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403619

Keywords

This article is cited by

Search

Quick links