Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Expression of constitutively active Notch4 (Int-3) modulates myeloid proliferation and differentiation and promotes expansion of hematopoietic progenitors

Abstract

The Notch family of transmembrane receptors has been implicated in the regulation of many developmental processes. In this study, we evaluated the role of Notch4 in immature hematopoietic progenitors by inducing, with retroviral transduction, enforced expression of Int-3, the oncogenic and constitutively active form of mouse Notch4. Int-3-transduced human myeloid leukemia (HL-60) cells demonstrated significantly delayed expression of differentiation markers following retinoic acid and 12-0-tetradecanoylphorbol 13-acetate treatment. Furthermore, HL-60 cells expressing Int-3 displayed a slower growth rate than cells infected with void virus, and accumulation in the G0/G1 phases of cell cycle. Transduction with deletion mutants of Int-3 defined the importance of individual domains of the protein (in particular, the ANK domain and the C-terminal domain) in the inhibition of differentiation and growth arrest of HL-60 cells. When mouse bone marrow enriched for stem cells (5-fluorouracil-resistant, lineage negative) was transduced and cultured for two weeks, the Int-3-transduced population displayed a lower expression of differentiation markers and a three- to five-fold higher frequency of colony-forming cells (CFU-GM/BFU-E) than control cultures. These results strongly support the notion that Notch signaling inhibits differentiation and promotes expansion of hematopoietic stem/progenitor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  2. Mumm JS, Kopan R . Notch signaling: from the outside in. Dev Biol 2000; 228: 151–165.

    Article  CAS  PubMed  Google Scholar 

  3. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999; 398: 518–522.

    Article  CAS  PubMed  Google Scholar 

  4. Schroeter EH, Kisslinger JA, Kopan R . Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393: 382–386.

    Article  CAS  PubMed  Google Scholar 

  5. Moore MAS, Han W, Ye Q . Notch signaling during hematopoiesis. In: L Zon (ed). Hematopoiesis: A Developmental Approach. New York: Oxford University Press, 2001, pp 323–336.

    Google Scholar 

  6. Ohishi K, Katayama N, Shiku H, Varnum-Finney B, Bernstein ID . Notch signalling in hematopoiesis. Semin Cell Dev Biol 2003; 14: 143–150.

    Article  CAS  PubMed  Google Scholar 

  7. Pear WS, Radtke F . Notch signaling in lymphopoiesis. Semin Immunol 2003; 15: 69–79.

    Article  CAS  PubMed  Google Scholar 

  8. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  9. Karanu FN, Murdoch B, Miyabayashi T, Ohno M, Koremoto M, Gallacher L et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 2001; 97: 1960–1967.

    Article  CAS  PubMed  Google Scholar 

  10. Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998; 91: 4084–4091.

    CAS  PubMed  Google Scholar 

  11. Kojika S, Griffin JD . Notch receptors and hematopoiesis. Exp Hematol 2001; 29: 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  12. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19: 3337–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh N, Phillips RA, Iscove NN, Egan SE . Expression of notch receptors, notch ligands, and Fringe genes in hematopoiesis. Exp Hematol 2000; 28: 527–534.

    Article  CAS  PubMed  Google Scholar 

  14. Han W, Ye Q, Moore MA . A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 2000; 95: 1616–1625.

    CAS  PubMed  Google Scholar 

  15. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 1998; 8: 43–55.

    Article  CAS  PubMed  Google Scholar 

  17. Jones P, May G, Healy L, Brown J, Hoyne G, Delassus S et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood 1998; 92: 1505–1511.

    CAS  PubMed  Google Scholar 

  18. Walker L, Carlson A, Tan-Pertel HT, Weinmaster G, Gasson J . The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells 2001; 19: 543–552.

    Article  CAS  PubMed  Google Scholar 

  19. Nomaguchi K, Suzu S, Yamada M, Hayasawa H, Motoyoshi K . Expression of Jagged1 gene in macrophages and its regulation by hematopoietic growth factors. Exp Hematol 2001; 29: 850–855.

    Article  CAS  PubMed  Google Scholar 

  20. Parreira L, Neves H, Simoes S . Notch and lymphopoiesis: a view from the microenvironment. Semin Immunol 2003; 15: 81–89.

    Article  CAS  PubMed  Google Scholar 

  21. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  22. Tsai S, Fero J, Bartelmez S . Mouse Jagged2 is differentially expressed in hematopoietic progenitors and endothelial cells and promotes the survival and proliferation of hematopoietic progenitors by direct cell-to-cell contact. Blood 2000; 96: 950–957.

    CAS  PubMed  Google Scholar 

  23. Varnum-Finney B, Brashem-Stein C, Bernstein ID . Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003; 101: 1784–1789.

    Article  CAS  PubMed  Google Scholar 

  24. Ohishi K, Varnum-Finney B, Bernstein ID . Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(−) cord blood cells. J Clin Invest 2002; 110: 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  26. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  PubMed  Google Scholar 

  28. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99: 2369–2378.

    Article  CAS  PubMed  Google Scholar 

  29. Lam LT, Ronchini C, Norton J, Capobianco AJ, Bresnick EH . Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by Notch-1. J Biol Chem 2000; 275: 19676–19684.

    Article  CAS  PubMed  Google Scholar 

  30. Milner LA, Bigas A, Kopan R, Brashem-Stein C, Bernstein ID, Martin DI . Inhibition of granulocytic differentiation by mNotch1. Proc Natl Acad Sci USA 1996; 93: 13014–13019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J . Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Genes Dev 1996; 122: 2251–2259.

    CAS  Google Scholar 

  32. Gallahan D, Callahan R . The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997; 14: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  33. Robbins J, Blondel BJ, Gallahan D, Callahan R . Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 1992; 66: 2594–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992; 6: 345–355.

    Article  CAS  PubMed  Google Scholar 

  35. Uyttendaele H, Soriano JV, Montesano R, Kitajewski J . Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 1998; 196: 204–217.

    Article  CAS  PubMed  Google Scholar 

  36. Soriano JV, Uyttendaele H, Kitajewski J, Montesano R . Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer 2000; 86: 652–659.

    Article  CAS  PubMed  Google Scholar 

  37. Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD . Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein–Barr virus EBNA2. Mol Cell Biol 1996; 16: 952–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato H, Sakai T, Tamura K, Minoguchi S, Shirayoshi Y, Hamada Y et al. Functional conservation of mouse Notch receptor family members. FEBS Lett 1996; 395: 221–224.

    Article  CAS  PubMed  Google Scholar 

  39. Hsieh JJ, Nofziger DE, Weinmaster G, Hayward SD . Epstein–Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J Virol 1997; 71: 1938–1945.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shawber C, Nofziger D, Hsieh JJ, Lindsell C, Bogler O, Hayward D et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996; 122: 3765–3773.

    CAS  PubMed  Google Scholar 

  41. Buron MI, Rodriguez-Aguilera JC, Gonzalez-Reyes JA, Villalba JM, Alcain FJ, Navarro F et al. A quantitative ultrastructural and cytochemical study of TPA-induced differentiation in HL-60 cells. Leukemia Res 1993; 17: 863–872.

    Article  CAS  Google Scholar 

  42. Milner LA, Kopan R, Martin DI, Bernstein ID . A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 1994; 83: 2057–2062.

    CAS  PubMed  Google Scholar 

  43. Bigas A, Martin DI, Milner LA . Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol 1998; 18: 2324–2333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ingles-Esteve J, Espinosa L, Milner LA, Caelles C, Bigas A . Phosphorylation of Ser2078 modulates the Notch2 function in 32D cell differentiation. J Biol Chem 2001; 276: 44873–44880.

    Article  CAS  PubMed  Google Scholar 

  45. Schroeder T, Just U . Notch signalling via RBP-J promotes myeloid differentiation. EMBO J 2000; 19: 2558–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan-Pertel HT, Walker L, Browning D, Miyamoto A, Weinmaster G, Gasson JC . Notch signaling enhances survival and alters differentiation of 32D myeloblasts. J Immunol 2000; 165: 4428–4436.

    Article  CAS  PubMed  Google Scholar 

  47. Schroeder T, Just U . mNotch1 signaling reduces proliferation of myeloid progenitor cells by altering cell-cycle kinetics. Exp Hematol 2000; 28: 1206–1213.

    Article  CAS  PubMed  Google Scholar 

  48. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61: 3200–3205.

    CAS  PubMed  Google Scholar 

  49. Morimura T, Goitsuka R, Zhang Y, Saito I, Reth M, Kitamura D . Cell cycle arrest and apoptosis induced by Notch1 in B cells. J Biol Chem 2000; 275: 36523–36531.

    Article  CAS  PubMed  Google Scholar 

  50. Johnston LA, Edgar BA . Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 1998; 394: 82–84.

    Article  CAS  PubMed  Google Scholar 

  51. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 1995; 5: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  52. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14: 1343–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li L, Huang GM, Banta AB, Deng Y, Smith T, Dong P et al. Cloning, characterization, and the complete 56.8-kilobase DNA sequence of the human Notch4 gene. Genomics 1998; 51: 45–58.

    Article  PubMed  Google Scholar 

  54. Leong KG, Hu X, Li L, Noseda M, Larrivee B, Hull C et al. Activated Notch4 inhibits angiogenesis: role of beta1-integrin activation. Mol Cell Biol 2002; 22: 2830–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G, Kitajewski J . Notch4 and jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res 2000; 60: 91–103.

    Article  CAS  PubMed  Google Scholar 

  56. Shutter JR, Scully S, Fan W, Richards WC, Kitajewski J, Deblandre GA et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000; 14: 1313–1318.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E et al. A Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 2003; 18: 699–711.

    Article  CAS  PubMed  Google Scholar 

  58. Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK et al. The genetic program of hematopoietic stem cells. Science 2000; 288: 1635–1640.

    Article  CAS  PubMed  Google Scholar 

  59. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  PubMed  Google Scholar 

  60. Park I-K, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99: 488–498.

    Article  CAS  PubMed  Google Scholar 

  61. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 2003; 101: 383–390.

    Article  CAS  PubMed  Google Scholar 

  62. Karanu FN, Yuefei L, Gallacher L, Sakano S, Bhatia M . Differential responses of primitive human CD34− and CD34+ hematopoietic cells to the Notch ligand Jagged-1. Leukemia 2003; 17: 1366–1374.

    Article  CAS  PubMed  Google Scholar 

  63. Hicks C, Johnson SH, diSibio G, Collazo A, Vogt TF, Weinmaster G . Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2000; 2: 515–520.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Kate deBeer for her secretarial assistance in preparation of this manuscript. This work was supported by NIH Grant HL61401 and NCI Grant PO1CA59350 (to MASM) and CNR Biotechnology Programme (to GM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A S Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Q., Shieh, JH., Morrone, G. et al. Expression of constitutively active Notch4 (Int-3) modulates myeloid proliferation and differentiation and promotes expansion of hematopoietic progenitors. Leukemia 18, 777–787 (2004). https://doi.org/10.1038/sj.leu.2403291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403291

Keywords

This article is cited by

Search

Quick links