Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Autocrine lymphotoxin production in Epstein–Barr virus-immortalized B cells: induction via NF-κB activation mediated by EBV-derived latent membrane protein 1

Abstract

Epstein–Barr virus (EBV)-immortalized lymphoblastoid cells express high levels of lymphotoxin and use this molecule as an autocrine growth factor. We hypothesized that the EBV-derived latent membrane protein 1 (LMP1) mediates lymphotoxin production by inducing NF-κB binding to the lymphotoxin promoter. We assessed lymphotoxin production, LMP1 expression, and NF-κB activation in Z-43 (EBV-positive lymphoblastoid cells), Daudi (EBV-positive Burkitt's cells), and 3A4 (EBV-negative Burkitt's cells containing a stably transfected tetracycline-inducible LMP1 construct). Z-43 cells expressed high levels of LMP1 (immunoblot) and lymphotoxin (ELISA); the EBV-positive Burkitt's lymphoma line Daudi expressed neither LMP1 nor lymphotoxin. Similarly, induction of LMP1 in the 3A4 cells (exposed to tetracycline) was accompanied by a 13-fold increase in lymphotoxin levels (ELISA) as compared to uninduced (LMP1-negative) cells. EMSAs demonstrated high levels of NF-κB activation in Z-43 and tetracycline-induced 3A4 cells, but much lower levels in the uninduced 3A4 cells. Exposure of these cells to Bay 11-7082 (an inhibitor of IκB phosphorylation and, therefore, NF-κB activation) abrogated NF-κB binding and lymphotoxin production in a dose-dependent manner in both Z-43 and 3A4 cells. Therefore, in our model system, autocrine lymphotoxin production is largely driven by NF-κB activation, which is in turn mediated by EBV-derived LMP1 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Burkitt DP . A sarcoma involving the jaws in African children. Br J Surg 1958; 46: 218–223.

    Article  CAS  PubMed  Google Scholar 

  2. Epstein MA, Achong B, Barr Y . Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964; 1: 702–708.

    Article  CAS  PubMed  Google Scholar 

  3. Baumforth KRN, Young LS, Flavell KJ, Constandinou C, Murray PG . The Epstein–Barr virus and its association with human cancers. J Clin Pathol Mol Pathol 1999; 52: 307–322.

    Article  CAS  Google Scholar 

  4. Cohen J . Epstein–Barr virus infection. N Engl J Med 2000; 343: 481–492.

    Article  CAS  PubMed  Google Scholar 

  5. Ambinder R, Lemas M, Moore S, Yang J, Fabian D, Krone C . Epstein–Barr virus and lymphoma. In: Tallman M, Gordon L (eds). Diagnostic and Therapeutic Advances in Hematologic Malignancies. Boston: Kluwer Academic Publishers, 1999, pp 27–38.

    Chapter  Google Scholar 

  6. Henle W, Diege G, Kohn H, Zur Hausen H, Henle G . Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 1967; 157: 1064–1065.

    Article  CAS  PubMed  Google Scholar 

  7. Diehl V, Henle W, Henle G, Kohn G . Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol 1968; 2: 663–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pulvertaft R . Cytology of Burkitt's tumor (African tumor). Lancet 1964; 7: 238–243.

    Article  Google Scholar 

  9. Blazar B, Sutton L, Strome M . Self-stimulating growth factor production by B-cell lines derived from Burkitt's lymphoma and other lines transformed in vitro by Epstein–Barr virus. Cancer Res 1983; 43: 4562–4568.

    CAS  PubMed  Google Scholar 

  10. Gordon J, Ley S, Melamed M, Aman P, Hughes-Jones NC . Soluble factor requirements for the auto-stimulatory growth of B lymphoblasts immortalized by Epstein–Barr virus. J Exp Med 1984; 159: 1554–1559.

    Article  CAS  PubMed  Google Scholar 

  11. Gordon J, Ley S, Melamed M, English LS, Hughes-Jones NC . Immortalized B-lymphocytes produce B-cell growth factor. Nature 1984; 310: 145–147.

    Article  CAS  PubMed  Google Scholar 

  12. Tosato G, Gerrar T, Goldman N, Pike S . Stimulation of EBV-activated human B-cells by monocytes and monocyte products. Role of INF-β2/B-cell stimulatory factor 2/IL-6. J Immunol 1988; 140: 4329–4336.

    CAS  PubMed  Google Scholar 

  13. Estrov Z, Kurzrock R, Pocsik E, Pathak S, Kantarjian HM, Zipf TF et al. Lymphotoxin is an autocrine growth factor for Epstein–Barr virus-infected B-cell lines. J Exp Med 1993; 177: 763–774.

    Article  CAS  PubMed  Google Scholar 

  14. Zimber-Strobl U, Kempkes B, Marschall G, Zeidler R, Van Kooten C, Banchereau J et al. Epstein–Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J 1996; 15: 7070–7078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 1997; 16: 6131–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baichwal VR, Sugden B . Transformation of Balb-3T3 cells by the BNLF-1 gene of Epstein–Barr virus. Oncogene 1988; 2: 461–467.

    CAS  PubMed  Google Scholar 

  17. Wang D, Liebowitz D, Kieff E . An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43: 831–840.

    Article  CAS  PubMed  Google Scholar 

  18. Eliopoulos A, Dawson C, Mosialos G, Floettmann JE, Rowe M, Armitage RJ et al. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein–Barr virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene 1996; 13: 2243–2254.

    CAS  PubMed  Google Scholar 

  19. Devergne O, Hatzivassiliou E, Izumi K, Kaye KM, Kleijnen MF, Kieff E et al. Association of TRAF1, TRAF2, and TRAF3 with an Epstein–Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996; 12: 7098–7108.

    Article  Google Scholar 

  20. Liebowitz D . Epstein–Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. N Engl J Med 1998; 338: 1413–1421.

    Article  CAS  PubMed  Google Scholar 

  21. Izumi K, Kieff E . The Epstein–Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor associated death domain protein to mediate B lymphocyte growth transformation and NF-κB activation. Proc Natl Acad Sci USA 1997; 94: 12592–12597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller W, Mosialos G, Kieff E, Raab-Traub N . Epstein–Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-κB activation. J Virol 1997; 1: 586–594.

    Google Scholar 

  23. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E . The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995; 10: 389–399.

    Article  Google Scholar 

  24. Huen DS, Henderson SH, Croom-Carter D, Rowe M . The Epstein–Barr virus latent membrane protein (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxyl-terminal cytoplasmic domain. Oncogene 1995; 10: 549–560.

    CAS  PubMed  Google Scholar 

  25. Eliopoulos AG, Young LS . Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus encoded latent membrane protein-1. Oncogene 1998; 6: 1731–1742.

    Article  Google Scholar 

  26. Eliopoulos AG, Gallagher NJ, Blake SMA, Dawson CW, Young LS . Activation of the p38 mitogen activated protein kinase pathway by Epstein–Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 1999; 274: 16085–16096.

    Article  CAS  PubMed  Google Scholar 

  27. Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C et al. Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 1999; 18: 3064–3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrero J, Matthew P, Paya C . LMP-1 activates NF-κB by targeting the inhibitory molecule IκBα. J Virol 1995; 69: 2168–2174.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sylla B, Hung S, Davidson D, Hatzivassiliou E, Malinin NL, Wallach D et al. Epstein–Barr virus transforming protein latent infection membrane protein 1 activates transcription factor NF-κB through a pathway that includes the NF-κB-inducing kinase and the IκB kinases IKKα and IKKβ. Proc Natl Acad Sci USA 1998; 95: 10106–10111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitchell T, Sugden B . Stimulation of NF-κB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein–Barr virus. J Virol 1995; 69: 2968–2976.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Messer G, Weiss E, Baeuerle P . Tumor necrosis factor β (TNF-β) induces binding of the NF-κB transcription factor to a high-affinity κB element in the TNF-β promoter. Cytokine 1990; 2: 389–397.

    Article  CAS  PubMed  Google Scholar 

  32. Paul N, Lenardo M, Novak K, Sarr T, Tang WL, Ruddle NH . Lymphotoxin activation by human T-cell leukemia virus type 1-infected cell lines: role for NF-κB. J Virol 1990; 64: 5412–5419.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Clements G, Klein G, Povey S . Production by EBV infection of an EBNA-positive subline from an EBNA-negative human lymphoma cell line without detectable EBV DNA. Int J Cancer 1975; 16: 125–133.

    Article  CAS  PubMed  Google Scholar 

  34. Kaykas A, Sugden B . The N-terminus and membrane spanning domains of LMP-1 inhibit cell proliferation. Oncogene 2000; 19: 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  35. Pierce J, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T et al. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 1997; 272: 21096–21103.

    Article  CAS  PubMed  Google Scholar 

  36. Mann K, Staunton D, Thorley-Lawson D . An Epstein–Barr virus-encoded protein found in the plasma membranes of transformed cells. J Virol 1985; 55: 710–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawa K . Epstein–Barr virus-associated diseases in humans. Int J Hematol 2000; 71: 108–117.

    CAS  PubMed  Google Scholar 

  38. Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ, Jarrett JA et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 1984; 312: 721–724.

    Article  CAS  PubMed  Google Scholar 

  39. Pennica D, Nedwin G, Hayflick JS, Seeburg PH, Derynck R, Palladino MA et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxoin. Nature 1984; 312: 724–729.

    Article  CAS  PubMed  Google Scholar 

  40. McClain K, Estrov Z, Raju U, Kelley P, Aggarwal BB . Epstein–Barr virus EBNA2 gene expression enhances lymphotoxin production by B-lymphocytes. Methods 1997; 11: 83–87.

    Article  CAS  PubMed  Google Scholar 

  41. Paul N, Millet I, Ruddle N . The lymphotoxin promoter is stimulated by HTLV-1 tax activation of NF-κB in human T-cell lines. Cytokine 1993; 5: 372–378.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, M., Aggarwal, B., Shishodia, S. et al. Autocrine lymphotoxin production in Epstein–Barr virus-immortalized B cells: induction via NF-κB activation mediated by EBV-derived latent membrane protein 1. Leukemia 17, 2196–2201 (2003). https://doi.org/10.1038/sj.leu.2403130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403130

Keywords

This article is cited by

Search

Quick links