Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

Abstract

In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB-independent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bloomfield CD, de La CA . Chromosome abnormalities in acute nonlymphocytic leukemia: clinical and biologic significance. Semin Oncol 1987; 14: 372–383.

    CAS  PubMed  Google Scholar 

  2. Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 1987; 317: 468–473.

    Article  CAS  PubMed  Google Scholar 

  3. Tuyt LM, Dokter WH, Esselink MT, Vellenga E . Divergent effects of IL-10 and IL-4 on the proliferation and growth factor secretion by acute myeloblastic leukemic cells. Eur Cytokine Netw 1995; 6: 231–235.

    CAS  PubMed  Google Scholar 

  4. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  5. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E . Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001; 15: 1923–1931.

    Article  CAS  PubMed  Google Scholar 

  6. Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ et al. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 1997; 278: 1812–1815.

    Article  CAS  PubMed  Google Scholar 

  7. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin Jr AS . Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997; 272: 24113–24116.

    Article  CAS  PubMed  Google Scholar 

  8. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  PubMed  Google Scholar 

  9. Pennington KN, Taylor JA, Bren GD, Paya CV . IkappaB kinase-dependent chronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition of differentiation-induced apoptosis of monocytes. Mol Cell Biol 2001; 21: 1930–1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 1999; 18: 1223–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steinman RA, Huang J, Yaroslavskiy B, Goff JP, Ball ED, Nguyen A . Regulation of p21(WAF1) expression during normal myeloid differentiation. Blood 1998; 91: 4531–4542.

    CAS  PubMed  Google Scholar 

  12. Chen J, Jackson PK, Kirschner MW, Dutta A . Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 1995; 374: 386–388.

    Article  CAS  PubMed  Google Scholar 

  13. Luo Y, Hurwitz J, Massague J . Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375: 159–161.

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A . Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 1996; 16: 4673–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakanishi M, Robetorye RS, Adami GR, Pereira-Smith OM, Smith JR . Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMBO J 1995; 14: 555–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin J, Reichner C, Wu X, Levine AJ . Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol 1996; 16: 1786–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asada M, Yamada T, Fukumuro K, Mizutani S . p21Cip1/WAF1 is important for differentiation and survival of U937 cells. Leukemia 1998; 12: 1944–1950.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki A, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, Akahane K . Procaspase 3/p21 complex formation to resist fas-mediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ 2000; 7: 721–728.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki A, Tsutomi Y, Yamamoto N, Shibutani T, Akahane K . Mitochondrial regulation of cell death: mitochondria are essential for procaspase 3-p21 complex formation to resist Fas-mediated cell death. Mol Cell Biol 1999; 19: 3842–3847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  21. Rossig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S . Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 2001; 21: 5644–5657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  23. Koenderman L, Kok PT, Hamelink ML, Verhoeven AJ, Bruijnzeel PL . An improved method for the isolation of eosinophilic granulocytes from peripheral blood of normal individuals. J Leukoc Biol 1988; 44: 79–86.

    Article  CAS  PubMed  Google Scholar 

  24. Miyazaki Y, Kuriyama K, Higuchi M, Tsushima H, Sohda H, Imai N et al. Establishment and characterization of a new erythropoietin-dependent acute myeloid leukemia cell line, AS-E2. Leukemia 1997; 11: 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  25. Rambaldi A, Bettoni S, Tosi S, Giudici G, Schiro R, Borleri GM et al. Establishment characterization of a new granulocyte–macrophage colony-stimulating factor-dependent interleukin-3-dependent human acute myeloid leukemia cell line (GF-D8). Blood 1993; 81: 1376–1383.

    CAS  PubMed  Google Scholar 

  26. Schreiber E, Matthias P, Muller MM, Schaffner W . Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 1989; 17: 6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baldwin Jr AS . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S . I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 1995; 80: 573–582.

    Article  CAS  PubMed  Google Scholar 

  29. Kuno K, Matsushima K . The IL-1 receptor signaling pathway. J Leukoc Biol 1994; 56: 542–547.

    Article  CAS  PubMed  Google Scholar 

  30. Kuno K, Sukegawa K, Ishikawa Y, Orii T, Matsushima K . Acid sphingomyelinase is not essential for the IL-1 and tumor necrosis factor receptor signaling pathway leading to NFkB activation. Int Immunol 1994; 6: 1269–1272.

    Article  CAS  PubMed  Google Scholar 

  31. Birkenkamp KU, Esselink MT, Kruijer W, Vellenga E . Differential effects of interleukin-3 and interleukin-1 on the proliferation and interleukin-6 protein secretion of acute myeloid leukemic cells; the involvement of ERK, p38 and STAT5. Eur Cytokine Netw 1999; 10: 479–490.

    CAS  PubMed  Google Scholar 

  32. Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E . A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation. Leukemia 1999; 13: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  33. Blagosklonny MV, Wu GS, Omura S, el Deiry WS . Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 1996; 227: 564–569.

    Article  CAS  PubMed  Google Scholar 

  34. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 1991; 266: 15771–15781.

    CAS  PubMed  Google Scholar 

  35. Herbert JM, Augereau JM, Gleye J, Maffrand JP . Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1990; 172: 993–999.

    Article  CAS  PubMed  Google Scholar 

  36. de Thonel A, Bettaieb A, Jean C, Laurent G, Quillet-Mary A . Role of protein kinase C zeta isoform in Fas resistance of immature myeloid KG1a leukemic cells. Blood 2001; 98: 3770–3777.

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi E, Ando K, Nakano H, Iida T, Ohno H, Morimoto M et al. Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 1989; 42: 1470–1474.

    Article  CAS  Google Scholar 

  38. Arvidsson Y, Hamazaki TS, Ichijo H, Funa K . ASK1 resistant neuroblastoma is deficient in activation of p38 kinase. Cell Death Differ 2001; 8: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  39. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D . Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 1998; 281: 1860–1863.

    Article  CAS  PubMed  Google Scholar 

  40. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275: 90–94.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki A, Tsutomi Y, Miura M, Akahane K . Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 1999; 18: 1239–1244.

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M . Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998; 17: 931–939.

    Article  CAS  PubMed  Google Scholar 

  43. Lai JM, Wu S, Huang DY, Chang ZF . Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13-acetate-induced apoptotic cells. Mol Cell Biol 2002; 22: 7581–7592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scott MT, Morrice N, Ball KL . Reversible phosphorylation at the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferating cell nuclear antigen binding. J Biol Chem 2000; 275: 11529–11537.

    Article  CAS  PubMed  Google Scholar 

  45. Birkenkamp KU, Geugien M, Schepers H, Westra JL, Lemmink HH, Vellenga E . Constitutive NF-kappa B DNA binding activity in AML is frequently mediated by a RAS/PI3-K/PKB-dependent pathway (submitted).

  46. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E . Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 2000; 95: 3765–3770.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Minoru Asada from the Department of Biochemistry, The Cancer Institute, Tokyo, for the kind gift of the U937 cell lines, stable transfected with either mock- or a ZnCl2-inducible p21 construct. This study was supported by grants from the Dutch Cancer Foundation (RuG 1999-1994, RuG 2000-2316).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schepers, H., Geugien, M., Eggen, B. et al. Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia. Leukemia 17, 2113–2121 (2003). https://doi.org/10.1038/sj.leu.2403106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403106

Keywords

This article is cited by

Search

Quick links