Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary and Mini Review
  • Published:

Commentary and Mini-Review

Skipping the two-step? Possible mechanisms of Epstein–Barr virus reactivation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Piovan E, Bonaldi L, Indraccolo S, Tosello V, Menin C, Comacchio F et al. Tumor outgrowth in peripheral blood mononuclear cell-injected SCID mice is not associated with early Epstein–Barr virus reactivation. Leukemia 2003; 17: 1643–1649.

    Article  CAS  PubMed  Google Scholar 

  2. Kieff E, Rickinson AB . Epstein–Barr virus and its replication. In: Knipe DM, Howley PM (eds), Fields Virology, 4th ed. New York: Lippincott Williams & Wilkins, 2001, pp 2511–2574.

    Google Scholar 

  3. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA . EBV persistence in memory B cells in vivo. Immunity 1998; 9: 395–404.

    Article  CAS  PubMed  Google Scholar 

  4. Joseph AM, Babcock GJ, Thorley-Lawson DA . EBV persistence involves strict selection of latently infected B cells. J Immunol 2000; 165: 2975–2981.

    Article  CAS  PubMed  Google Scholar 

  5. Qu L, Rowe DT . Epstein–Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol 1992; 66: 3715–3724.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tierney RJ, Steven N, Young LS, Rickinson AB . Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 1994; 68: 7374–7385.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen F, Zou J-Z, di Renzo L, Winberg G, Hu L-F, Klein E et al. A subpopulation of normal B cells latently infected with Epstein–Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol 1995; 69: 3752–3758.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Portis T, Cooper L, Dennis P, Longnecker R . The LMP2A signalosome–a therapeutic target for Epstein–Barr virus latency and associated disease. Front Biosci 2002; 7: d414–d426.

    Article  CAS  PubMed  Google Scholar 

  9. Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA . Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 1999; 190: 567–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rickinson AB, Lee SP, Steven NM . Cytotoxic T lymphocyte response to Epstein–Barr virus. Curr Opin Immunol 1996; 8: 492–497.

    Article  CAS  PubMed  Google Scholar 

  11. Crawford DH, Sweny P, Edwards JM, Janossy G, Hoffbrand AV . Long-term T-cell mediated immunity to Epstein–Barr virus in renal-allograft recipients receiving cyclosporin A. Lancet 1981; 1: 10–12.

    Article  CAS  PubMed  Google Scholar 

  12. Gaston JSH, Rickinson AB, Epstein MA . Epstein–Barr virus-specific T-cell memory in renal-allograft recipients under long-term immunosuppression. Lancet 1982; 1: 923–925.

    Article  CAS  PubMed  Google Scholar 

  13. Hanto DW, Frizzera G, Gajl-Peczalska KJ, Simmons RL . Epstein–Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation 1985; 39: 461–472.

    Article  CAS  PubMed  Google Scholar 

  14. Nalesnik MA . Posttransplantation lymphoproliferative disorders: current perspectives. Semin Thorac Cardiovasc Surg 1996; 8: 139–148.

    CAS  PubMed  Google Scholar 

  15. Thomas JA, Allday MJ, Crawford DH . Epstein–Barr virus-associated lymphoproliferative disorders in immunocompromised individuals. Adv Cancer Res 1991; 57: 329–380.

    Article  CAS  PubMed  Google Scholar 

  16. Young L, Alfieri C, Hennessy K, Evans H, O'Hara C, Anderson KC et al. Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 1989; 321: 1080–1085.

    Article  CAS  PubMed  Google Scholar 

  17. Katz BZ, Raab-Traub N, Miller G . Latent and replicating forms of Epstein–Barr virus DNA in lymphomas and lymphoproliferative diseases. J Infect Dis 1989; 160: 589–598.

    Article  CAS  PubMed  Google Scholar 

  18. Katz BZ, Saini U . Presence of the diffuse early antigen of Epstein–Barr virus in lymphomas and lymphoproliferative disorders. Am J Pathol 1992; 140: 1247–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  CAS  PubMed  Google Scholar 

  20. Cannon MJ, Pisa P, Fox RI, Cooper NR . Epstein–Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest 1990; 85: 1333–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rowe M, Young LS, Crocker J, Stokes H, Henderson S, Rickinson AB . Epstein–Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 1991; 173: 147–158.

    Article  CAS  PubMed  Google Scholar 

  22. Veronese ML, Veronesi A, D'Andrea E, Del Mistro A, Indraccolo S, Mazza MR et al. Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. I. T lymphocyte requirement for B cell tumor generation. J Exp Med 1992; 176: 1763–1767.

    Article  CAS  PubMed  Google Scholar 

  23. Boyle TJ, Coles RE, Kizilbash AM, Lyerly HK . Effects of cyclosporine on human B-cell lymphoma development in vivo. Surg Oncol 1992; 1: 79–86.

    Article  CAS  PubMed  Google Scholar 

  24. Rickinson AB, Jarvis JE, Crawford DH, Epstein MA . Observations on the type of infection by Epstein–Barr virus in peripheral lymphoid cells of patients with infectious mononucleosis. Int J Cancer 1974; 14: 704–715.

    Article  CAS  PubMed  Google Scholar 

  25. Rickinson AB, Finerty S, Epstein MA . Comparative studies on adult donor lymphocytes infected by EB virus in vivo or in vitro: origin of transformed cells arising in cocultures with foetal lymphocytes. Int J Cancer 1977; 19: 775–782.

    Article  CAS  PubMed  Google Scholar 

  26. Rickinson AB, Rowe M, Hart LJ, Yao QY, Henderson LE, Rabin H et al. T-cell-mediated regression of ‘spontaneous’ and of Epstein–Barr virus-induced B-cell transformation in vitro: studies with cyclosporin A. Cell Immunol 1984; 87: 646–658.

    Article  CAS  PubMed  Google Scholar 

  27. Yao QY, Czarnecka H, Rickinson AB . Spontaneous outgrowth of Epstein–Barr virus-positive B-cell lines from circulating human B cells of different buoyant densities. Int J Cancer 1991; 48: 253–257.

    Article  CAS  PubMed  Google Scholar 

  28. Fu Z, Cannon MJ . Functional analysis of the CD4+ T cell response to Epstein–Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression. J Virol 2000; 74: 6675–6679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rochford R, Mosier DE . Differential Epstein–Barr virus gene expression in B-cell subsets recovered from lymphomas in SCID mice after transplantation of human peripheral blood lymphocytes. J Virol 1995; 9: 150–155.

    Google Scholar 

  30. Boyle TJ, Tamburini M, Berend KR, Kizilbash AM, Borowitz MJ, Lyerly HK . Human B-cell lymphoma in severe combined immunodeficient mice after active infection with Epstein–Barr virus. Surgery 1992; 112: 378–386.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, M., Rochford, R. Skipping the two-step? Possible mechanisms of Epstein–Barr virus reactivation. Leukemia 17, 1464–1466 (2003). https://doi.org/10.1038/sj.leu.2403041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403041

Search

Quick links