Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myeloma

Incomplete DJH rearrangements of the IgH gene are frequent in multiple myeloma patients: immunobiological characteristics and clinical implications

Abstract

DH–JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 1984; 3: 1209–1219.

    Article  CAS  Google Scholar 

  2. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  Google Scholar 

  3. Coleclough C, Perry RP, Karjalainen K, Weigert M . Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 1981; 290: 372–378.

    Article  CAS  Google Scholar 

  4. Chang Y, Bosma MJ, Bosma GC . Extended duration of DH–JH rearrangement in immunoglobulin heavy chain transgenic mice: implications for regulation of allelic exclusion. J Exp Med 1999; 189: 1295–1305.

    Article  CAS  Google Scholar 

  5. Alt F, Rosenberg N, Lewis S, Thomas E, Baltimore D . Organization and reorganization of immunoglobulin genes in A-MULV-transformed cells: rearrangement of heavy but not light chain genes. Cell 1981; 27(2 Part 1): 381–390.

    Article  CAS  Google Scholar 

  6. Alt FW, Rosenberg N, Enea V, Siden E, Baltimore D . Multiple immunoglobulin heavy-chain gene transcripts in Abelson murine leukemia virus-transformed lymphoid cell lines. Mol Cell Biol 1982; 2: 386–400.

    Article  CAS  Google Scholar 

  7. Rassenti LZ, Kipps TJ . Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J Exp Med 1997; 185: 1435–1445.

    Article  CAS  Google Scholar 

  8. Szczepanski T, van tVeer MB, Wolvers-Tettero IL, Langerak AW, van Dongen JM . Molecular features responsible for the absence of immunoglobulin heavy chain protein synthesis in an IgH(-) subgroup of multiple myeloma. Blood 2000; 96: 1087–1093.

    CAS  PubMed  Google Scholar 

  9. Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der DM et al. Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol 1995; 155: 2487–2497.

    CAS  Google Scholar 

  10. Kosmas C, Stamatopoulos K, Stavroyianni N, Zoi K, Belessi C, Viniou N et al. Origin and diversification of the clonogenic cell in multiple myeloma: lessons from the immunoglobulin repertoire. Leukemia 2000; 14: 1718–1726.

    Article  CAS  Google Scholar 

  11. Pilarski LM, Masellis S, Szczepek A, Mant MJ, Belch AR . Circulating clonotypic B cells in the biology of multiple myeloma: speculations on the origin of myeloma. Leukemia Lymphoma 1996; 22: 375–383.

    Article  CAS  Google Scholar 

  12. Bakkus MH, Heirman C, van Riet I, van Camp B, Thielemans K . Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992; 80: 2326–2335.

    CAS  PubMed  Google Scholar 

  13. Garcia-Sanz R, Lopez-Perez R, Langerak AW, Gonzalez D, Chillon MC, Balanzategui A et al. Heteroduplex PCR analysis of rearranged immunoglobulin genes for clonality assessment in multiple myeloma. Haematologica 1999; 84: 328–335.

    CAS  PubMed  Google Scholar 

  14. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  Google Scholar 

  15. Bruggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 2000; 14: 1419–1425.

    Article  CAS  Google Scholar 

  16. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014.

    Article  CAS  Google Scholar 

  17. Ladetto M, Donovan JW, Harig S, Trojan A, Poor C, Schlossnan R et al. Real-time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 241–253.

    Article  CAS  Google Scholar 

  18. Committee of the Chronic Leukemia--Myeloma Task Force, Proposed guidelines for protocol studies. II. Plasma cell myeloma. Prepared by a Committee of the Chronic Leukemia--Myeloma Task Force, National Cancer Institute. Cancer Chemother Rep 3 1968; 1: 17–39.

  19. Ocqueteau M, Orfao A, Almeida J, Blade J, Gonzalez M, Garcia-Sanz R et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 1998; 152: 1655–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez M, Gonzalez D, Lopez-Perez R, Garcia-Sanz R, Chillon MC, Balanzategui A et al. Heteroduplex analysis of VDJ amplified segments from rearranged IgH genes for clonality assessments in B-cell non-Hodgkin's lymphoma. A comparison between different strategies. Haematologica 1999; 84: 779–784.

    CAS  PubMed  Google Scholar 

  21. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero IL, van Dongen JM . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11: 2192–2199.

    Article  CAS  Google Scholar 

  22. Cook GP, Tomlinson IM . The human immunoglobulin VH repertoire. Immunol Today 1995; 16: 237–242.

    Article  CAS  Google Scholar 

  23. Lefranc MP . IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 2001; 29: 207–209.

    Article  CAS  Google Scholar 

  24. Chang B, Casali P . The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 1994; 15: 367–373.

    Article  CAS  Google Scholar 

  25. Kosmas C, Viniou NA, Stamatopoulos K, Courtenay L, Papadaki T, Kollia P et al. Analysis of the kappa light chain variable region in multiple myeloma. Br J Haematol 1996; 94: 306–317.

    Article  CAS  Google Scholar 

  26. Sahota SS, Leo R, Hamblin TJ, Stevenson FK . Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood 1997; 89:219–226.

    CAS  Google Scholar 

  27. Allen D, Simon T, Sablitzky F, Rajewsky K, Cumano A . Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J 1988; 7: 1995–2001.

    Article  CAS  Google Scholar 

  28. Katz JB, Limpanasithikul W, Diamond B . Mutational analysis of an autoantibody: differential binding and pathogenicity. J Exp Med 1994; 180: 925–932.

    Article  CAS  Google Scholar 

  29. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  Google Scholar 

  30. Tumas B, Manser T . The transcriptional promoter regulates hypermutation of the antibody heavy chain locus. J Exp Med 1997; 185: 239–250.

    Article  Google Scholar 

  31. Fukita Y, Jacobs H, Rajewsky K . Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 1998; 9: 105–114.

    Article  CAS  Google Scholar 

  32. Betz AG, Milstein C, Gonzalez F, Pannell R, Larson T, Neuberger MS . Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 1994; 77: 239–248.

    Article  CAS  Google Scholar 

  33. Lebecque SG, Gearhart PJ . Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J Exp Med 1990; 172: 1717–1727.

    Article  CAS  Google Scholar 

  34. Reth MG, Alt FW . Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells. Nature 1984; 312: 418–423.

    Article  CAS  Google Scholar 

  35. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ . Precursor-B-ALL with D(H)–J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  Google Scholar 

  36. Bertrand FE, Billips LG, Burrows PD, Gartland GL, Kubagawa H, Schroeder HW . Ig D(H) gene segment transcription and rearrangement before surface expression of the pan-B-cell marker CD19 in normal human bone marrow. Blood 1997; 90: 736–744.

    CAS  PubMed  Google Scholar 

  37. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  Google Scholar 

  38. Pfitzner T, Engert A, Wittor H, Schinkothe T, Oberhauser F, Schulz H et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–766.

    Article  CAS  Google Scholar 

  39. Rolink A, Melchers F . Molecular and cellular origins of B lymphocyte diversity. Cell 1991; 66: 1081–1094.

    Article  CAS  Google Scholar 

  40. Nussenzweig MC, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC et al. Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin mu. Science 1987; 236: 816–819.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mark Anderson and Felicitación García for their technical assistance in this study. David González is supported by the ‘Instituto de Salud Carlos III’ (BISCIII) Grant 99/4230. This work was partially supported by the BIOMED-2 Concerted Action (BMH4-CT98-3936).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, D., Balanzategui, A., García-Sanz, R. et al. Incomplete DJH rearrangements of the IgH gene are frequent in multiple myeloma patients: immunobiological characteristics and clinical implications. Leukemia 17, 1398–1403 (2003). https://doi.org/10.1038/sj.leu.2402964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402964

Keywords

This article is cited by

Search

Quick links