Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

What retroviruses teach us about the involvement of c-Myc in leukemias and lymphomas

Abstract

Overexpression of the cellular oncogene c-Myc frequently occurs during induction of leukemias and lymphomas in many species. Retroviruses have enhanced our understanding of the role of c-Myc in such tumors. Leukemias and lymphomas induced by retroviruses activate c-Myc by: (1) use of virally specified proteins that increase c-Myc transcription, (2) transduction and modification of c-Myc to generate a virally encoded form of the gene, v-Myc, and (3) proviral integration in or near c-Myc. Proviral integrations elevate transcription by insertion of retroviral enhancers found in the long terminal repeat (LTR). Studies of the LTR enhancer elements from these retroviruses have revealed the importance of these elements for c-Mycactivation in several cell types. Retroviruses also have been used to identify genes that collaborate with c-Myc during development and progression of leukemias and lymphomas. In these experiments, animals that are transgenic for c-Mycoverexpression (often in combination with the overexpression or deletion of known proto-oncogenes) have been infected with retroviruses that then insertionally activate novel co-operating cellular genes. The retrovirus then acts as a molecular ‘tag’ for cloning of these genes. This review covers several aspects of c-Myc involvement in retrovirally induced leukemias and lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Watson DK, Reddy EP, Duesberg PH, Papas TS . Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions, by comparison with the transforming gene of avian myelocytomatosis virus MC29, delta gag-myc Proc Natl Acad Sci USA 1983 80: 2146–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walther N, Lurz R, Patschinsky T, Jansen HW, Bister K . Molecular cloning of proviral DNA and structural analysis of the transduced myc oncogene of avian oncovirus CMII J Virol 1985 54: 576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS . Nucleotide sequence of avian carcinoma virus MH2: two potential onc genes, one related to avian virus MC29 and the other related to murine sarcoma virus 3611 Proc Natl Acad Sci USA 1984 81: 3000–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayflick J, Seeburg PH, Ohlsson R, Pfeifer-Ohlsson S, Watson D, Papas T, Duesberg PH . Nucleotide sequence of two overlapping myc-related genes in avian carcinoma virus OK10 and their relation to the myc genes of other viruses and the cell Proc Natl Acad Sci USA 1985 82: 2718–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henriksson M, Luscher B . Proteins of the Myc network: essential regulators of cell growth and differentiation Adv Cancer Res 1996 68: 109–182

    Article  CAS  PubMed  Google Scholar 

  6. Kato GJ, Barrett J, Villa-Garcia M, Dang CV . An amino-terminal c-myc domain required for neoplastic transformation activates transcription Mol Cell Biol 1990 10: 5914–5920

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Luscher B, Larsson LG . The basic region/helix–loop–helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation Oncogene 1999 18: 2955–2966

    Article  CAS  PubMed  Google Scholar 

  8. Davis LJ, Halazonetis TD . Both the helix–loop–helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max Oncogene 1993 8: 125–132

    CAS  PubMed  Google Scholar 

  9. Blackwood EM, Kretzner L, Eisenman RN . Myc and Max function as a nucleoprotein complex Curr Opin Genet Dev 1992 2: 227–235

    Article  CAS  PubMed  Google Scholar 

  10. Spencer CA, Groudine M . Control of c-myc regulation in normal and neoplastic cells Adv Cancer Res 1991 56: 1–48

    Article  CAS  PubMed  Google Scholar 

  11. Nesbit CE, Tersak JM, Prochownik EV . MYC oncogenes and human neoplastic disease Oncogene 1999 18: 3004–3016

    Article  CAS  PubMed  Google Scholar 

  12. Cory S . Activation of cellular oncogenes in hemopoietic cells by chromosome translocation Adv Cancer Res 1986 47: 189–234

    Article  CAS  PubMed  Google Scholar 

  13. Cole MD . Activation of the c-myc oncogene Basic Life Sci 1986 38: 399–406

    CAS  PubMed  Google Scholar 

  14. Cole MD . The myc oncogene: its role in transformation and differentation Annu Rev Genet 1986 20: 361–384

    Article  CAS  PubMed  Google Scholar 

  15. Magrath I . The pathogenesis of Burkitt's lymphoma Adv Cancer Res 1990 55: 133–270

    Article  CAS  PubMed  Google Scholar 

  16. Croce CM . Molecular biology of lymphomas Semin Oncol 1993 20: 31–46

    CAS  PubMed  Google Scholar 

  17. Klein G . Immunoglobulin gene associated chromosomal translocations in B-cell derived tumors Curr Top Microbiol Immunol 1999 246: 161–167

    CAS  PubMed  Google Scholar 

  18. Klein G . Chromosomal translocations in B-cell derived tumors Prog Clin Biol Res 1987 246: 75–91

    CAS  PubMed  Google Scholar 

  19. Adams JM, Cory S . Myc oncogene activation in B and T lymphoid tumours Proc R Soc Lond B Biol Sci 1985 226: 59–72

    Article  CAS  PubMed  Google Scholar 

  20. McKeithan TW, Shima EA, Le Beau MM, Minowada J, Rowley JD, Diaz MO . Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3′ side of MYC Proc Natl Acad Sci USA 1986 83: 6636–6640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shima EA, Le Beau MM, McKeithan TW, Minowada J, Showe LC, Mak TW, Minden MD, Rowley JD, Diaz MO . Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia Proc Natl Acad Sci USA 1986 83: 3439–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inaba T, Murakami S, Oku N, Itoh K, Ura Y, Nakanishi S, Shimazaki C, Nishio A, Nakagawa M, Fujita N . Translocation between chromosomes 8q24 and 14q11 in T-cell acute lymphoblastic leukemia Cancer Genet Cytogenet 1990 49: 69–74

    Article  CAS  PubMed  Google Scholar 

  23. Mathieu-Mahul D, Caubet JF, Bernheim A, Mauchauffe M, Palmer E, Berger, Larsen CJ . Molecular cloning of a DNA fragment from human chromosome 14(14q11) involved in T-cell malignancies EMBO J 1985 4: 3427–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hayashi Y, Yamamoto K, Kojima S . T-cell acute lymphoblastic leukemias with a t(8;14) possibly involving a c-myc locus and T-cell-receptor alpha-chain genes New Engl J Med 1986 314: 650–651

    Article  CAS  PubMed  Google Scholar 

  25. Erikson J, Finger L, Sun L, ar-Rushdi A, Nishikura K, Minowada J, Finan, Emanuel BS, Nowell PC, Croce CM . Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias Science 1986 232: 884–886

    Article  CAS  PubMed  Google Scholar 

  26. Amati B, Land H . Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death Curr Opin Genet Dev 1994 4: 102–108

    Article  CAS  PubMed  Google Scholar 

  27. Pelengaris S, Rudolph B, Littlewood T . Action of Myc in vivo – proliferation and apoptosis Curr Opin Genet Dev 2000 10: 100–105

    Article  CAS  PubMed  Google Scholar 

  28. Dang CV . c-Myc target genes involved in cell growth, apoptosis, and metabolism Mol Cell Biol 1999 19: 1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K . Function of the c-Myc oncogenic transcription factor Exp Cell Res 1999 253: 63–77

    Article  CAS  PubMed  Google Scholar 

  30. Prendergast GC . Mechanisms of apoptosis by c-Myc Oncogene 1999 18: 2967–2987

    Article  CAS  PubMed  Google Scholar 

  31. Peters MA, Taparowsky EJ . Target genes and cellular regulators of the Myc transcription complex Crit Rev Eukaryot Gene Exp 1998 8: 277–296

    Article  CAS  Google Scholar 

  32. Grandori C, Eisenman RN . Myc target genes Trends Biochem Sci 1997 22: 177–181

    Article  CAS  PubMed  Google Scholar 

  33. Facchini LM, Penn LZ . The molecular role of Myc in growth and transformation: recent discoveries lead to new insights FASEB J 1998 12: 633–651

    Article  CAS  PubMed  Google Scholar 

  34. Fuhrmann G, Rosenberger G, Grusch M, Klein N, Hofmann J, Krupitza G . The MYC dualism in growth and death Mutat Res 1999 437: 205–217

    Article  CAS  PubMed  Google Scholar 

  35. Hoffman B, Liebermann DA . The proto-oncogene c-myc and apoptosis Oncogene 1998 17: 3351–3357

    Article  PubMed  Google Scholar 

  36. Thompson EB . The many roles of c-Myc in apoptosis Annu Rev Physiol 1998 60: 575–600

    Article  CAS  PubMed  Google Scholar 

  37. Weiss RA, Schulz TF . Transforming properties of the HTLV-1 tax gene Cancer Cells 1990 2: 281–283

    CAS  PubMed  Google Scholar 

  38. Ressler S, Connor LM, Marriott SJ . Cellular transformation by human T-cell leukemia virus type 1 FEMS Micro Lett 1996 140: 99–109

    Article  CAS  Google Scholar 

  39. Munoz E, Israel A . Activation of NF-kappa B by the Tax protein of HTLV-1 Immunobiol 1995 193: 128–136

    Article  CAS  Google Scholar 

  40. Sun SC, Ballard DW . Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases Oncogene 1999 18: 6948–6958

    Article  CAS  PubMed  Google Scholar 

  41. Li XH, Gaynor RB . Regulation of NF-kappaB by the HTLV-1 Tax protein Gene Exp 1999 7: 233–245

    CAS  Google Scholar 

  42. Duyao MP, Kessler DJ, Spicer DB, Bartholomew C, Cleveland JL, Siekevitz M, Sonenshein GE . Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B J Biol Chem 1992 267: 16288–16291

    Article  CAS  PubMed  Google Scholar 

  43. Benvenisty N, Ornitz DM, Bennett GL, Sahagan BG, Kuo A, Cardiff RD, Leder P . Brain tumours and lymphomas in transgenic mice that carry HTLV-1 LTR/c-myc and Ig/tax genes Oncogene 1992 7: 2399–2405

    CAS  PubMed  Google Scholar 

  44. Fauci AS, Desrosiers RC . Pathogenesis of HIV and SIV In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1997 pp 587–635

    Google Scholar 

  45. Astrin SM, Laurence J . Human immunodeficiency virus activates c-myc and Epstein–Barr virus in human B lymphocytes Ann NY Acad Sci 1992 651: 422–432

    Article  CAS  PubMed  Google Scholar 

  46. Krumm A, Meulia T, Groudine M . Common mechanisms for the control of eukaryotic transcriptional elongation Bioessays 1993 15: 659–665

    Article  CAS  PubMed  Google Scholar 

  47. Reddy EP, Reynolds RK, Watson DK, Schultz RA, Lautenberger J, Papas TS . Nucleotide sequence analysis of the proviral genome of avian myelocytomatosis virus (MC29) Proc Natl Acad Sci USA 1983 80: 2500–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayward WS, Neel BG, Astrin SM . Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis Nature 1981 290: 475–480

    Article  CAS  PubMed  Google Scholar 

  49. Gavine PR, Neil JC, Crouch DH . Protein stabilization: a common consequence of mutations in independently derived v-Myc alleles Oncogene 1999 18: 7552–7558

    Article  CAS  PubMed  Google Scholar 

  50. Rosenberg N, Jolicoeur P . Retroviral Pathogenesis In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1997 pp 475–585

    Google Scholar 

  51. Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE . Analysis of avian leukosis virus DNA and RNA in bursal tumours: viral gene expression is not required for maintenance of the tumor state Cell 1981 23: 311–322

    Article  CAS  PubMed  Google Scholar 

  52. Bishop JM . The molecular genetics of cancer Science 1987 235: 305–311

    Article  CAS  PubMed  Google Scholar 

  53. Varmus HE . The molecular genetics of cellular oncogenes Annu Rev Genet 1984 18: 553–612

    Article  CAS  PubMed  Google Scholar 

  54. Teich N, Wyke J, Mak T, Bernstein A, Hardy W . Pathogenesis of retrovirus-induced disease In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA Tumor Viruses Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1984 pp 785–998

    Google Scholar 

  55. Hughes SH, Shank PR, Spector DH, Kung HJ, Bishop JM, Varmus HE, Vogt PK, Breitman ML . Proviruses of avian sarcoma virus are terminally redundant, co-extensive with unintegrated linear DNA and integrated at many sites Cell 1978 15: 1397–1410

    Article  CAS  PubMed  Google Scholar 

  56. Withers-Ward ES, Kitamura Y, Barnes JP, Coffin JM . Distribution of targets for avian retrovirus DNA integration in vivo Genes Dev 1994 8: 1473–1487

    Article  CAS  PubMed  Google Scholar 

  57. Boerkoel CF, Kung HJ . Transcriptional interaction between retroviral long terminal repeats (LTRs): mechanism of 5′ LTR suppression and 3′ LTR promoter activation of c-myc in avian B-cell lymphomas J Virol 1992 66: 4814–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herman SA, Coffin JM . Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA J Virol 1986 60: 497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson HL, Gagnon GC . Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas J Virol 1986 57: 28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Lohuizen M, Berns A . Tumorigenesis by slow-transforming retroviruses – an update Biochim Biophys Acta 1990 1032: 213–235

    CAS  PubMed  Google Scholar 

  61. Pizer E, Humphries EH . RAV-1 insertional mutagenesis: disruption of the c-myb locus and development of avian B-cell lymphomas J Virol 1989 63: 1630–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raines MA, Lewis WG, Crittenden LB, Kung HJ . c-erbB activation in avian leukosis virus-induced erythroblastosis: clustered integration sites and the arrangement of provirus in the c-erbB alleles Proc Natl Acad Sci USA 1985 82: 2287–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nilsen TW, Maroney PA, Goodwin RG, Rottman FM, Crittenden LB, Raines MA, Kung HJ . c-erbB activation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor Cell 1985 41: 719–726

    Article  CAS  PubMed  Google Scholar 

  64. Corcoran LM, Adams JM, Dunn AR, Cory S . Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion Cell 1984 37: 113–122

    Article  CAS  PubMed  Google Scholar 

  65. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A . Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region Cell 1984 37: 141–150

    Article  CAS  PubMed  Google Scholar 

  66. Selten G, Cuypers HT, Zijlstra M, Melief C, Berns A . Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation EMBO J 1984 3: 3215–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Donnell PV, Fleissner E, Lonial H, Koehne CF, Reicin A . Early clonality and high-frequency proviral integration into the c-myc locus in AKR leukemias J Virol 1985 55: 500–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reicin A, Yang JQ, Marcu KB, Fleissner E, Koehne CF, O'Donnell PV . Deregulation of the c-myc oncogene in virus-induced thymic lymphomas of AKR/J mice Mol Cell Biol 1986 6: 4088–4092

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Y, Holland CA, Hartley JW, Hopkins N . Viral integration near c-myc in 10–20% of mcf 247-induced AKR lymphomas Proc Natl Acad Sci USA 1984 81: 6808–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rajan L, Broussard D, Lozano M, Lee CG, Kozak CA, Dudley JP . The c-myc locus is a common integration site in type B retrovirus-induced T-cell lymphomas J Virol 2000 74: 2466–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Broussard DR, Mertz JA, Lozano M, Dudley JP . (2002) Selection for c-myc integration sites in polyclonal T-cell lymphomas J Virol 2002 76: 2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen H, Yoshimura FK . Identification of a region of a murine leukemia virus long terminal repeat with novel transcriptional regulatory activities J Virol 1994 68: 3308–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mucenski ML, Gilbert DJ, Taylor BA, Jenkins NA, Copeland NG . Common sites of viral integration in lymphomas arising in AKXD recombinant inbred mouse strains Oncogene Res 1987 2: 33–48

    CAS  PubMed  Google Scholar 

  74. Forrest D, Onions D, Lees G, Neil JC . Altered structure and expression of c-myc in feline T-cell tumours Virology 1987 158: 194–205

    Article  CAS  PubMed  Google Scholar 

  75. Lewis WH, Michalopoulos EE, Williams DL, Minden MD, Mak TW . Breakpoints in the human T-cell antigen receptor alpha-chain locus in two T-cell leukaemia patients with chromosomal translocations Nature 1985 317: 544–546

    Article  CAS  PubMed  Google Scholar 

  76. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P . Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells Proc Natl Acad Sci USA 1982 79: 7837–7841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leder P, Battey J, Lenoir G, Moulding C, Murphy W, Potter H, Stewart T, Taub R . Translocations among antibody genes in human cancer Science 1983 222: 765–771

    Article  CAS  PubMed  Google Scholar 

  78. Siebenlist U, Hennighausen L, Battey J, Leder P . Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma Cell 1984 37: 381–391

    Article  CAS  PubMed  Google Scholar 

  79. Nowell PC, Croce CM . Chromosomal approaches to the molecular basis of neoplasia Symp Fund Cancer Res 1986 39: 17–29

    CAS  Google Scholar 

  80. Aghib DF, Bishop JM . A 3′ truncation of myc caused by chromosomal translocation in a human T-cell leukemia is tumorigenic when tested in established rat fibroblasts Oncogene 1991 6: 2371–2375

    CAS  PubMed  Google Scholar 

  81. Hicks GG, Mowat M . Integration of Friend murine leukemia virus into both alleles of the p53 oncogene in an erythroleukemic cell line J Virol 1988 62: 4752–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weinstein Y, Ihle JN, Lavu S, Reddy EP . Truncation of the c-myb gene by a retroviral integration in an interleukin 3-dependent myeloid leukemia cell line Proc Natl Acad Sci USA 1986 83: 5010–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ceci JD, Patriotis CP, Tsatsanis C, Makris AM, Kovatch R, Swing DA, Jenkins NA, Tsichlis PN, Copeland NG . Tpl-2 is an oncogenic kinase that is activated by carboxy-terminal truncation Genes Dev 1997 11: 688–700

    Article  CAS  PubMed  Google Scholar 

  84. Wolff L, Koller R, Davidson W . Acute myeloid leukemia induction by amphotropic murine retrovirus (4070A): clonal integrations involve c-myb in some but not all leukemias J Virol 1991 65: 3607–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lazo PA, Lee JS, Tsichlis PN . Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas Proc Natl Acad Sci USA 1990 87: 170–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsichlis PN, Shepherd BM, Bear SE . Activation of the Mlvi-1/mis1/pvt-1 locus in Moloney murine leukemia virus-induced T-cell lymphomas Proc Natl Acad Sci USA 1989 86: 5487–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Veronese ML, Ohta M, Finan J, Nowell PC, Croce CM . Detection of myc translocations in lymphoma cells by fluorescence in situ hybridization with yeast artificial chromosomes Blood 1995 85: 2132–2138

    Article  CAS  PubMed  Google Scholar 

  88. Tsichlis PN, Lee JS, Bear SE, Lazo PA, Patriotis C, Gustafson E, Shinton S, Jenkins NA, Copeland NG, Huebner K, Croce C, Levan G, Hanson C . Activation of multiple genes by provirus integration in the Mlvi-4 locus in T-cell lymphomas induced by Moloney murine leukemia virus J Virol 1990 64: 2236–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eick D, Polack A, Kofler E, Lenoir GM, Rickinson AB, Bornkamm GW . Expression of P0- and P3-RNA from the normal and translocated c-myc allele in Burkitt's lymphoma cells Oncogene 1990 5: 1397–1402

    CAS  PubMed  Google Scholar 

  90. Eick D, Polack A, Kofler E, Bornkamm GW . The block of elongation in c-myc exon 1 is abolished in Burkitt's lymphoma cell lines with variant translocation Oncogene 1988 3: 397–403

    CAS  PubMed  Google Scholar 

  91. Lee CM, Reddy EP . The v-myc oncogene Oncogene 1999 18: 2997–3003

    Article  CAS  PubMed  Google Scholar 

  92. Marcu KB, Bossone SA, Patel AJ . myc function and regulation Annu Rev Biochem 1992 61: 809–860

    Article  CAS  PubMed  Google Scholar 

  93. Felsher DW, Bishop JM . Reversible tumorigenesis by MYC in hematopoietic lineages Mol Cell 1999 4: 199–207

    Article  CAS  PubMed  Google Scholar 

  94. Kung HJ, Boerkoel C, Carter TH . Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation Curr Top Micro Immunol 1991 171: 1–25

    CAS  Google Scholar 

  95. Ishimoto A, Takimoto M, Adachi A, Kakuyama M, Kato S, Kakimi K, Fukuoka, Ogiu T, Matsuyama M . Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses J Virol 1987 61: 1861–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chatis PA, Holland CA, Hartley JW, Rowe WP, Hopkins N . Role for the 3′ end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses Proc Natl Acad Sci USA 1983 80: 4408–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosen CA, Haseltine WA, Lenz J, Ruprecht R, Cloyd MW . Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences J Virol 1985 55: 862–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dreyfus F, Sola B, Fichelson S, Varlet P, Charon M, Tambourin P, Wendling F, Gisselbrecht S . Rearrangements of the Pim-1, c-myc, and p53 genes in Friend helper virus-induced mouse erythroleukemias Leukemia 1990 4: 590–594

    CAS  PubMed  Google Scholar 

  99. Selten G, Cuypers HT, Berns A . Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas EMBO J 1985 4: 1793–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P . Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development Cell 1986 45: 485–495

    Article  CAS  PubMed  Google Scholar 

  101. Ross SR, Hsu CL, Choi Y, Mok E, Dudley JP . Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice Mol Cell Biol 1990 10: 5822–5829

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mertz JA, Mustafa F, Meyers S, Dudley JP . Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1 J Virol 2001 75: 2174–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pedersen FS, Crowther RL, Tenney DY, Reimold AM, Haseltine WA . Novel leukaemogenic retroviruses isolated from cell line derived from spontaneous AKR tumour Nature 1981 292: 167–170

    Article  CAS  PubMed  Google Scholar 

  104. Lovmand J, Sorensen AB, Schmidt J, Ostergaard M, Luz A, Pedersen FS . B-cell lymphoma induction by Akv murine leukemia viruses harboring one or both copies of the tandem repeat in the U3 enhancer J Virol 1998 72: 5745–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tupper JC, Chen H, Hays EF, Bristol GC, Yoshimura FK . Contributions to transcriptional activity and to viral leukemogenicity made by sequences within and downstream of the MCF13 murine leukemia virus enhancer J Virol 1992 66: 7080–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yoshimura FK, Wang T . Role of the LTR region between the enhancer and promoter in mink cell focus-forming murine leukemia virus pathogenesis Virology 2001 283: 121–131

    Article  CAS  PubMed  Google Scholar 

  107. Yoshimura FK, Wang T, Cankovic M . Sequences between the enhancer and promoter in the long terminal repeat affect murine leukemia virus pathogenicity and replication in the thymus J Virol 1999 73: 4890–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. DiFronzo NL, Holland CA . Sequence-specific and/or stereospecific constraints of the U3 enhancer elements of MCF 247-W are important for pathogenicity J Virol 1999 73: 234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morrison HL, Soni B, Lenz J . Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus J Virol 1995 69: 446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia J Biol Chem 2000 275: 651–656

    Article  CAS  PubMed  Google Scholar 

  111. McCarthy TL, Ji C, Chen Y, Kim KK, Imagawa M, Ito Y, Centrella M . Runt domain factor (Runx)-dependent effects on CCAAT/enhancer-binding protein delta expression and activity in osteoblasts J Biol Chem 2000 275: 21746–21753

    Article  CAS  PubMed  Google Scholar 

  112. Melnikova IN, Crute BE, Wang S, Speck NA . Sequence specificity of the core-binding factor J Virol 1993 67: 2408–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bae SC, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima H, Shigesada K, Satake M, Ito Y . Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1 Oncogene 1993 8: 809–814

    CAS  PubMed  Google Scholar 

  114. Thornell A, Hallberg B, Grundstrom T . Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3 Mol Cell Biol 1988 8: 1625–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 Proc Natl Acad Sci USA 1991 88: 10431–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA . Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor Mol Cell Biol 1993 13: 3324–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito F, Ito Y, Shigesada K . Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha Virology 1993 194: 314–331

    Article  CAS  PubMed  Google Scholar 

  118. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y . PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene Proc Natl Acad Sci USA 1993 90: 6859–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Speck NA, Renjifo B, Golemis E, Fredrickson TN, Hartley JW, Hopkins N . Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity Genes Dev 1990 4: 233–242

    Article  CAS  PubMed  Google Scholar 

  120. Zaiman AL, Lewis AF, Crute BE, Speck NA, Lenz J . Transcriptional activity of core binding factor-alpha (AML 1) and beta subunits on murine leukemia virus enhancer cores J Virol 1995 69: 2898–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Martiney MJ, Levy LS, Lenz J . Suppressor mutations within the core binding factor (CBF/AML 1) binding site of a T-cell lymphomagenic retrovirus J Virol 1999 73: 2143–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martiney MJ, Rulli K, Beaty R, Levy LS, Lenz J . Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus J Virol 1999 73: 7599–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA . Core-binding factor influences the disease specificity of Moloney murine leukemia virus J Virol 1999 73: 5535–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amtoft HW, Sorensen AB, Bareil C, Schmidt J, Luz A, Pedersen FS . Stability of AML 1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants J Virol 1997 71: 5080–5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goetz TL, Gu TL, Speck NA, Graves BJ . Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2 Mol Cell Biol 2000 20: 81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gu TL, Goetz TL, Graves BJ, Speck NA . Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1) Mol Cell Biol 2000 20: 91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nieves A, Levy LS, Lenz J . Importance of a c-Myb binding site for lymphomagenesis by the retrovirus SL3-3 J Virol 1997 71: 1213–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yoshimura FK, Cankovic M, Smeltz R, Ibrahim S . Identification of nucleotide sequences that regulate transcription of the MCF13 murine leukemia virus long terminal repeat in activated T cells J Virol 1997 71: 2572–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ball JK, Diggelmann H, Dekaban GA, Grossi GF, Semmler R, Waight PA, Fletcher RF . Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus J Virol 1988 62: 2985–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yanagawa S-I, Kakimi K, Tanaka H, Murakami A, Nakagawa Y, Kubo Y, Yamada Y, Hiai H, Kuribayashi K, Masuda T, Ishimoto A . Mouse mammary tumor virus with rearranged long terminal repeats causes murine lymphomas J Virol 1993 67: 112–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ruddell A, Linial M, Schubach W, Groudine M . Lability of leukosis virus enhancer-binding proteins in avian hematopoeitic cells J Virol 1988 62: 2728–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bowers WJ, Ruddell A . a1/EBP: a leucine zipper protein that binds CCAAT/enhancer elements in the avian leukosis virus long terminal repeat enhancer J Virol 1992 66: 6578–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bowers WJ, Baglia LA, Ruddell A . Regulation of avian leukosis virus long terminal repeat-enhanced transcription by C/EBP-Rel interactions J Virol 1996 70: 3051–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith CD, Baglia LA, Curristin SM, Ruddell A . The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements J Virol 1994 68: 6232–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shaughnessy JDJ, Owens JDJ, Wiener F, Hilbert DM, Huppi K, Potter M, Mushinski JF . Retroviral enhancer insertion 5′ of c-myc in two translocation-negative mouse plasmacytomas upregulates c-myc expression to different extents Oncogene 1993 8: 3111–3121

    CAS  PubMed  Google Scholar 

  136. Cameron ER, Morton J, Johnston CJ, Irvine J, Bell M, Onions DE, Neil JC, Campbell M, Blyth K . Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene Cell Death Differ 2000 7: 80–88

    Article  CAS  PubMed  Google Scholar 

  137. Feisher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM . Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts Proc Natl Acad Sci USA 2000 97: 10544–10548

    Article  Google Scholar 

  138. Jonkers J, Berns A . Retroviral insertional mutagenesis as a strategy to identify cancer genes Biochim Biophys Acta 1996 1287: 29–57

    PubMed  Google Scholar 

  139. Berns A, Mikkers H, Krimpenfort P, Allen J, Scheijen B, Jonkers J . Identification and characterization of collaborating oncogenes in compound mutant mice Cancer Res 1999 59: 1773s–1777s

    CAS  PubMed  Google Scholar 

  140. Pircher TJ, Zhao S, Geiger JN, Joneja B, Wojchowski DM . Pim-1 kinase protects hematopoietic FDC cells from genotoxin-induced death Oncogene 2000 19: 3684–3692

    Article  CAS  PubMed  Google Scholar 

  141. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, Berns A . Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors Cell 1989 56: 673–682

    Article  CAS  PubMed  Google Scholar 

  142. Schmidt T, Zornig M, Beneke R, Moroy T . MoMuLV proviral integrations identified by Sup-F selection in tumors from infected myc/pim bitransgenic mice correlate with activation of the gfi-1 gene Nucleic Acids Res 1996 24: 2528–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grimes HL, Gilks CB, Chan TO, Porter S, Tsichlis PN . The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death Proc Natl Acad Sci USA 1996 93: 14569–14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Domen J . The role of apoptosis in regulating hematopoiesis and hematopoietic stem cells Immunol Res 2001 22: 83–94

    Article  Google Scholar 

  145. Shinto Y, Morimoto M, Katsumata M, Uchida A, Aozasa K, Okamoto M, Kurosawa T, Ochi T, Greene MI, Tsujimoto Y . Moloney murine leukemia virus infection accelerates lymphomagenesis in E mu-bcl-2 transgenic mice Oncogene 1995 11: 1729–1736

    CAS  PubMed  Google Scholar 

  146. Miyazaki T, Liu ZJ, Taniguchi T . Selective cooperation of HTLV-1-encoded p40tax-1 with cellular oncoproteins in the induction of hematopoietic cell proliferation Oncogene 1996 12: 2403–2408

    CAS  PubMed  Google Scholar 

  147. Levy LS, Lobelle-Rich PA, Overbaugh J . flvi-2, a target of retroviral insertional mutagenesis in feline thymic lymphosarcomas, encodes bmi-1 Oncogene 1993 8: 1833–1838

    CAS  PubMed  Google Scholar 

  148. Levy LS, Lobelle-Rich PA . Insertional mutagenesis of flvi-2 in tumors induced by infection with LC-FeLV, a myc-containing strain of feline leukemia virus J Virol 1992 66: 2885–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bardos JI, Saurin AJ, Tissot C, Duprez E, Freemont PS . HPC3 is a new human polycomb orthologue that interacts and associates with RING1 and Bmi1 and has transcriptional repression properties J Biol Chem 2000 275: 28785–28792

    Article  CAS  PubMed  Google Scholar 

  150. Trimarchi JM, Fairchild B, Wen J, Lees JA . The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex Proc Natl Acad Sci USA 2001 98: 1519–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF Genes Dev 1999 13: 2678–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stewart M, Terry A, O'Hara M, Cameron E, Onions D, Neil JC . til-1: a novel proviral insertion locus for Moloney murine leukaemia virus in lymphomas of CD2-myc transgenic mice J Gen Virol 1996 77: 443–446

    Article  CAS  PubMed  Google Scholar 

  153. Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil, Stewart M . A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc Oncogene 1999 18: 7124–7134

    Article  CAS  PubMed  Google Scholar 

  154. Neil J, Stewart M, Terry A, O'Hara M, Hu M, Blyth K, Baxter E, Onions, Cameron E . Identification of murine CBF alpha1, a runt domain transcription factor, as a putative Myc collaborator in T cell lymphoma Leukemia 1999 13 (Suppl. 1): S83–S86

    Article  Google Scholar 

  155. Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB . Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex J Cell Biochem 1997 66: 1–8

    Article  CAS  PubMed  Google Scholar 

  156. Haupt Y, Harris AW, Adams JM . Retroviral infection accelerates T lymphomagenesis in E mu-N-ras transgenic mice by activating c-myc or N-myc Oncogene 1992 7: 981–986

    CAS  PubMed  Google Scholar 

  157. Davies J, Badiani P, Weston K . Cooperation of Myb and Myc proteins in T cell lymphomagenesis Oncogene 1999 18: 3643–3647

    Article  CAS  PubMed  Google Scholar 

  158. Belli B, Wolff L, Nazarov V, Fan H . Proviral activation of the c-myb proto-oncogene is detectable in preleukemic mice infected neonatally with Moloney murine leukemia virus but not in resulting end stage T lymphomas J Virol 1995 69: 5138–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Barr NI, Stewart M, Tsatsanis C, Fulton R, Hu M, Tsujimoto H, Neil JC . The fit-1 common integration locus in human and mouse is closely linked to MYB Mamm Genome 1999 10: 556–559

    Article  CAS  PubMed  Google Scholar 

  160. Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA, Jolicoeur P . Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis Genes Dev 1996 10: 1930–1944

    Article  CAS  PubMed  Google Scholar 

  161. Busslinger M, Nutt SL, Rolink AG . Lineage commitment in lymphopoiesis Curr Opin Immunol 2000 12: 151–158

    Article  CAS  PubMed  Google Scholar 

  162. Girard L, Jolicoeur P . A full-length Notch1 allele is dispensable for transformation associated with a provirally activated truncated Notch1 allele in Moloney MuLV-infected MMTV(D)/myc transgenic mice Oncogene 1998 16: 517–522

    Article  CAS  PubMed  Google Scholar 

  163. Hoemann CD, Beaulieu N, Girard L, Rebai N, Jolicoeur P . Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice Mol Cell Biol 2000 20: 3831–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Largaespada DA, Kaehler DA, Mishak H, Weissinger E, Potter M, Mushinski JF, Risser R . A retrovirus that expresses v-abl and c-myc oncogenes rapidly induces plasmacytomas Oncogene 1992 7: 811–819

    CAS  PubMed  Google Scholar 

  165. Weissinger EM, Mischak H, Goodnight J, Davidson WF, Mushinski JF . Addition of constitutive c-myc expression to Abelson murine leukemia virus changes the phenotype of the cells transformed by the virus from pre-B-cell lymphomas to plasmacytomas Mol Cell Biol 1993 13: 2578–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Clark SS . Recurring proviral integration suggests a role for proto-oncogene activation in thymomas induced with Mo-MuLV-rescued BCR/ABL virus Leukemia 1997 11: 1026–1033

    Article  CAS  PubMed  Google Scholar 

  167. Vigneri P, Wang JY . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase Nat Med 2001 7: 228–234

    Article  CAS  PubMed  Google Scholar 

  168. Haupt Y, Harris AW, Adams JM . Moloney virus induction of T-cell lymphomas in a plasmacytomagenic strain of E mu-v-abl transgenic mice Int J Cancer 1993 55: 623–629

    Article  CAS  PubMed  Google Scholar 

  169. Alexander WS, Adams JM, Cory S . Oncogene cooperation in lymphocyte transformation: malignant conversion of E mu-myc transgenic pre-B cells in vitro is enhanced by v-H-ras or v-raf but not v-abl Mol Cell Biol 1989 9: 67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Serunian LA, Rosenberg N . Abelson virus potentiates long-term growth of mature B lymphocytes Mol Cell Biol 1986 6: 183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  171. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A . Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging Cell 1991 65: 737–752

    Article  CAS  PubMed  Google Scholar 

  172. Jonkers J, Korswagen HC, Acton D, Breuer M, Berns A . Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas EMBO J 1997 16: 441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li L, Yuan H, Weaver CD, Mao J, Farr GH, Sussman DJ, Jonkers J, Kimelman D, Wu D . Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1 EMBO J 1999 18: 4233–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Saitoh T, Moriwaki J, Koike J, Takagi A, Miwa T, Shiokawa K, Katoh M . Molecular cloning and characterization of FRAT2, encoding a positive regulator of the WNT signaling pathway Biochem Biophys Res Commun 2001 281: 815–820

    Article  CAS  PubMed  Google Scholar 

  175. van der Lugt NM, Domen J, Verhoeven E, Linders K, van der GH, Allen J, Berns A . Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2 EMBO J 1995 14: 2536–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Breuer ML, Cuypers HT, Berns A . Evidence for the involvement of pim-2, a new common proviral insertion site, in progression of lymphomas EMBO J 1989 8: 743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zornig M, Schmidt T, Karsuny H, Grzeschiczek A, Moroy T . Zinc finger protein GFI-1 cooperates with myc and pim-1 in T cell lymphomagenesis Oncogene 1999 18: 3641: 1789–1801

    Google Scholar 

  178. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally Mol Cell Biol 1991 11: 1176–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Moroy T, Verbeek S, Ma A, Achacoso P, Berns A, Alt F . E mu N- and E mu L-myc cooperate with E mu pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice Oncogene 1991 6: 1941–1948

    CAS  PubMed  Google Scholar 

  180. Patriotis C, Makris A, Chernoff J, Tsichlis PN . Tpl-2 acts in concert with Ras and Raf-1 to activate mitogen-activated protein kinase Proc Natl Acad Sci USA 1994 91: 9755–9759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Scheijen B, Jonkers J, Acton D, Berns A . Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 transgenic mice J Virol 1997 71: 9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Alkema MJ, Jacobs H, van Lohuizen M, Berns A . Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmi1 trangenic mice require the Bmi1 RING finger Oncogene 1997 15: 899–910

    Article  CAS  PubMed  Google Scholar 

  183. Hueber AO, Evan GI . Traps to catch unwary oncogenes Trends Genet 1998 14: 364–367

    Article  CAS  PubMed  Google Scholar 

  184. Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN . Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor Mol Cell Biol 1996 16: 4024–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Blyth K, Terry A, Mackay N, Vaillant F, Bell M, Cameron ER, Neil JC, Stewart M . Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging Oncogene 2001 20: 295–302

    Article  CAS  PubMed  Google Scholar 

  186. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN, Ness SA . Pim-1 kinase and p100 cooperate to enhance c-Myb activity Mol Cell 1998 2: 417–425

    Article  CAS  PubMed  Google Scholar 

  187. Jacob AK, Sreekantaiah C, Baer MR, Sandberg AA . Translocation (1;6)(p12;p23) in ANLL Cancer Genet Cytogenet 1990 45: 67–71

    Article  CAS  PubMed  Google Scholar 

  188. Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S, Fernandez PL, van Lohuizen M, Colomer D, Campo E . BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas Cancer Res 2001 61: 2409–2412

    CAS  PubMed  Google Scholar 

  189. Lutterbach B, Hiebert SW . Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation Gene 2000 245: 223–235

    Article  CAS  PubMed  Google Scholar 

  190. Barletta C, Pelicci PG, Kenyon LC, Smith SD, Dalla-Favera R . Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas Science 1987 235: 1064–1067

    Article  CAS  PubMed  Google Scholar 

  191. Faderl S, Talpaz M, Estrov Z, Kantarjian HM . Chronic myelogenous leukemia: biology and therapy Ann Intern Med 1999 131: 201–219

    Article  Google Scholar 

  192. Behre G, Zhang P, Zhang DE, Tenen DG . Analysis of the modulation of transcriptional activity in myelopoiesis and leukemogenesis Methods (Duluth) 1999 17: 231–237

    Article  CAS  Google Scholar 

  193. Bresnick EH, Chu J, Christensen HM, Lin B, Norton J . Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis J Cell Biochem 2000 79 (Suppl. 35): 46–53

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grants CA34780 and CA77760 from the US National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JP Dudley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley, J., Mertz, J., Rajan, L. et al. What retroviruses teach us about the involvement of c-Myc in leukemias and lymphomas. Leukemia 16, 1086–1098 (2002). https://doi.org/10.1038/sj.leu.2402451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402451

Keywords

This article is cited by

Search

Quick links