Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcription factors and translocations in lymphoid and myeloid leukemia

Abstract

Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brown BA . Hematology: Principles and Procedures, 6 edn Lea & Febiger: Philadelphia 1993

    Google Scholar 

  2. Pennisi E . Matching the transcription machinery to the right DNA Science 2000 288: 1372–1373

    Article  CAS  PubMed  Google Scholar 

  3. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD . Molecular Biology of the Cell, 2 edn Garland Publishing: New York 1989

    Google Scholar 

  4. Wolffe AP . Transcriptional control. Sinful repression Nature 1997 387: 16–17

    Article  CAS  PubMed  Google Scholar 

  5. Roth SY, Allis CD . Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 1996 87: 5–8

    Article  CAS  PubMed  Google Scholar 

  6. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL . Transcriptional activators direct histone acetyltransferase complexes to nucleosomes Nature 1998 394: 498–502

    Article  CAS  PubMed  Google Scholar 

  7. So CW, Dong S, So CKC, Cheng GX, Huang QH, Chen SJ, Chan LC . The impact of differential binding of wild-type RARα, PML-, PLZF-, and NPM-RARα fusion proteins towards transcriptional co-activator, RIP-140, on retinoic acid responses in acute promyelocytic leukemia Leukemia 2000 14: 77–83

    Article  CAS  PubMed  Google Scholar 

  8. Verma IM, Stevenson JK, Schwartz EM, Van AD, Miyamoto S . Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation Genes Dev 1995 9: 2723–2735

    Article  CAS  PubMed  Google Scholar 

  9. Orkin SH . Hematopoiesis: how does it happen? Curr Opin Cell Biol 1995 7: 870–877

    Article  CAS  PubMed  Google Scholar 

  10. Menke AL, Vander Eb AJ, Jochemsen AG . The Wilms' tumor 1 gene: oncogene or tumor suppressor gene? Int Rev Cytol 1998 181: 151–212

    Article  CAS  PubMed  Google Scholar 

  11. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K, Kishimoto T, Sugiyama H . Cancer immunotherapy targeting Wilms’ tumor gene WT1 product J Immunol 2000 164: 1873–1880

    Article  CAS  PubMed  Google Scholar 

  12. Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP, Rauscher FJI . Transcriptional repression mediated by the WT1 Wilms’ tumor gene product Science 1991 253: 1550–1553

    Article  CAS  PubMed  Google Scholar 

  13. Rauscher FJI, Morris JF, Tournay OE, Cook DM, Curran T . Binding of the Wilms tumor locus zinc finger protein to the EGR-1 consensus sequence Science 1990 250: 1259–1262

    Article  CAS  PubMed  Google Scholar 

  14. Bickmore WA, Oghene K, Little MH, Seawright A, Heyningen Vv, Hastie ND . Modulation of DNA binding specificity by alternative splicing of the Wilms’ tumor wt1 gene transcript Science 1992 257: 235–237

    Article  CAS  PubMed  Google Scholar 

  15. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE . Isolation and characterization of a zinc-finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus Cell 1990 60: 509–520

    Article  CAS  PubMed  Google Scholar 

  16. Huang A, Campbell CE, Bonetta L, McAndrews-Hill MS, Chilton-MacNeill S, Coppes MJ, Law DJ, Feinberg AP, Yeger H, Williams BRG . Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms’ tumor Science 1990 250: 991–994

    Article  CAS  PubMed  Google Scholar 

  17. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman DE, VanHeyningen V, Hastie N . The candidate Wilms’ tumor gene is involved in genitourinary development Nature 1990 346: 194–197

    Article  CAS  PubMed  Google Scholar 

  18. Miwa H, Beran M, Saunders GF . Expression of the Wilms’ tumor gene (wt-1) in human leukemias Leukemia 1992 6: 405–409

    CAS  PubMed  Google Scholar 

  19. Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I . Expression of the candidate Wilms’ Tumor gene, WT1, in human leukemia cells Leukemia 1993 7: 970–977

    CAS  PubMed  Google Scholar 

  20. Sekiya M, Adachi M, Hinoda Y, Imai K, Yachi A . Down regulation of Wilms’ tumor gene (WT1) during monocytic differentiation in HL60 cells Blood 1994 83: 1876–1882

    CAS  PubMed  Google Scholar 

  21. Phelan SA, Lindberg C, Call KM . Wilms’ tumor gene, WT1, mRNA is down regulated during induction of erythroid and megakaryocytic differentiation of K562 cells Cell Growth Diff 1994 5: 677–686

    CAS  PubMed  Google Scholar 

  22. Wu Y, Fraizer GC, Saunders GF . GATA-1 transactivates the WT1 hematopoietic specific enhancer J Biol Chem 1995 270: 5944–5949

    Article  CAS  PubMed  Google Scholar 

  23. Mayo MW, Wang C-Y, Drouin SS, Madrid LV, Marshall AF, Reed JC, Weissman BE, Baldwin AS . WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene EMBO J 1999 18: 3990–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K . WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia Blood 1994 84: 3071–3079

    CAS  PubMed  Google Scholar 

  25. Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M, Kudoh T, Akiyama T, Murakami A, Maekawa T . Growth inhibition of human leukemic cells by WT1 (Wilms’ tumor gene) antisense oligonucleotides: implications for the involvement of WT1 in leukemogenesis Blood 1996 87: 2878–2884

    CAS  PubMed  Google Scholar 

  26. Inoue K, Takami H, Ogawa H, Oka Y, Soma T, Tatekawa T, Oji Y, Tsuboi A, Kim EH, Kawakami M, Akiyama T, Kishimoto T, Sugiyama H . Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells Blood 1998 91: 2969–2976

    CAS  PubMed  Google Scholar 

  27. Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Tamaki H, Oji Y, Kim EH, Soma T, Tatekawa T, Kawakami M, Kishimoto T, Sugiyama H . Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte colony-stimulating factor (G-CSF) Leukemia Res 1999 23: 499–505

    Article  CAS  Google Scholar 

  28. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM, Stauss HJ . Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1 Blood 2000 95: 2198–2203

    CAS  PubMed  Google Scholar 

  29. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  30. Dazzi F, Capelli D, Hasserjian R, Cotter F, Corbo M . Poletti A, Chinswangwatanakul W, Goldman JM, Gordon MY. The kinetics and extent of engraftment of chronic myelogenous leukemia cells in non-obese diabetic/severe combined immunodeficiency mice reflect the phase of the donor's disease: an in vivo model of chronic myelogenous leukemia biology Blood 1998 92: 1390–1396

    CAS  PubMed  Google Scholar 

  31. Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, Nayar R, Laraya P, Minden M, Keating A, Eaves AC, Eaves CJ, Dick JE . High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase Blood 1998 91: 2406–2414

    CAS  PubMed  Google Scholar 

  32. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L . The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro Exp Hematol 1997 25: 945–950

    CAS  PubMed  Google Scholar 

  33. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y, Miyake S, Tamaki H, Oji Y, Yamagami T, Tatekawa T, Soma T, Kishimoto T, Sugiyama H . Aberrant overexpression of the Wilms’ tumor gene (WT1) in human leukemia Blood 1997 89: 1405–1412

    CAS  PubMed  Google Scholar 

  34. Svedberg H, Chylicki K, Baldetorp B, Rauscher F, Gullberg U . Constitutive expression of the Wilms’ tumor gene (WT1) in the leukemic cell line U937 blocks parts of the differentiation program Oncogene 1998 16: 925–932

    Article  CAS  PubMed  Google Scholar 

  35. Friedman AD . Leukemogenesis by CBF oncoproteins Leukemia 1999 13: 1932–1942

    Article  CAS  PubMed  Google Scholar 

  36. Bae S, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima H, Shigesada K, Satake M, Ito Y . Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1 Oncogene 1993 8: 809–814

    CAS  PubMed  Google Scholar 

  37. Zhang DE, Fujioka K, Hetherington CJ, Shapiro LH, Chen HM, Look AT, Tenen DG . Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1) Mol Cell Biol 1994 14: 8085–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD . The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B Oncogene 1995 11: 2667–2674

    CAS  PubMed  Google Scholar 

  39. Hsiang YH, Spencer D, Wang S, Speck NA, Raulet DH . The role of viral enhancer ‘core’ motif-related sequences in regulating T cell receptor-γ and -δ gene expression J Immunol 1993 150: 3905–3916

    CAS  PubMed  Google Scholar 

  40. Cameron S, Taylor DS, TePas EC, Speck NA, Mathey-Prevot B . Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting Blood 1994 83: 2851–2859

    CAS  PubMed  Google Scholar 

  41. Suzow J, Friedman AD . The murine myeloperoxidase promoter contains several functional elements, one of which binds a cell type-restricted transcription factor, myeloid nuclear factor 1 (MyNF1) Mol Cell Biol 1993 13: 2141–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells Mol Cell Biol 1994 14: 5558–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR . The t(8;21) fusion product, AML1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation Mol Cell Biol 1998 18: 322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giese K, Kingsley C, Kirshner JR, Grosschedl R . Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions Genes Dev 1995 9: 995–1008

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez-Munain C, Krangel MS . Regulation of the T cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors Mol Cell Biol 1994 14: 473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niki M, Okada H, Takano J, Kuno J, Tani K, Hibino H, Asano S, Ito Y, Satake, M, Noda T . Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor Proc Natl Acad Sci USA 1997 94: 5697–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okuda T, Deursen Jv, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis Cell 1996 84: 321–330

    Article  CAS  PubMed  Google Scholar 

  48. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, Tani Y, Kishimoto T, Komori T . Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta Proc Natl Acad Sci USA 1996 93: 12359–12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis Proc Natl Acad Sci USA 1996 93: 3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . The CBFβ subunit is essential for CBFα2 (AML1) function in vivo Cell 1996 87: 697–708

    Article  CAS  PubMed  Google Scholar 

  51. Daga A, Tighe JE, Calabi F . Leukaemia/Drosophila homology Nature 1992 356: 484

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA . Cloning and characterization of subunits of the T cell receptor and murine leukemia virus enhancer core-binding factor Mol Cell Biol 1993 13: 3324–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ogawa E, Inuzuka M, Maruyamna M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K . Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α Virology 1993 194: 314–331

    Article  CAS  PubMed  Google Scholar 

  54. Downing JR . The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance Br J Haematol 1999 106: 296–308

    Article  CAS  PubMed  Google Scholar 

  55. Feinstein PG, Kornfield K, Hogness DS, Mann RS . Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue Genetics 1995 140: 573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex Proc Natl Acad Sci USA 1998 95: 10860–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO Mol Cell Biol 1998 18: 7185–7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW . ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors Mol Cell Biol 1998 18: 7176–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rowley JD . The critical role of chromosome translocations in human leukemias Annu Rev Genet 1998 32: 495–519

    Article  CAS  PubMed  Google Scholar 

  60. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 Proc Natl Acad Sci USA 1991 88: 10431–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG, Zhang D-E . Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis Proc Natl Acad Sci USA 1996 93: 11895–11900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . The AML1/ETO fusion protein activates transcription of BCL-2 Proc Natl Acad Sci USA 1996 93: 14059–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M . The AML1-MTG8 leukemic fusion protein formd a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1 Mol Cell Biol 1998 18: 846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ahn MY, Huang G, Bae SC, Wee HJ, Kim WY, Ito Y . Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO Proc Natl Acad Sci USA 1998 95: 1812–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shimizu K, Kitabayachi I, Kamada N, Abe T, Maseki N, Suzukawa K, Ohki M . AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon Blood 2000 96: 288–296

    CAS  PubMed  Google Scholar 

  66. Bender TP, Kuehl WM . Murine myb protooncogene mRNA: cDNA sequence and evidence for 5′ heterogeneity Proc Natl Acad Sci USA 1986 83: 3204–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Majello B, Kenyon LC, Dalla-Favera R . Human c-myb protooncogene: nucleotide sequence of cDNA and organization of the genomic locus Proc Natl Acad Sci USA 1986 83: 9636–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Calabretta B, Skorski T . Gene regulatory mechanisms operative on hematopoietic cells: proliferation, differentiation, and neoplasia Crit Rev Euk Gene Exp 1997 7: 117–124

    Article  CAS  Google Scholar 

  69. Brandt TL, Fraser DJ, Leal S, Halandras PM, Kroll AR, Kroll DJ . c-Myb trans-activates the human DNA topoisomerase IIa gene promoter J Biol Chem 1997 272: 6278–6284

    Article  CAS  PubMed  Google Scholar 

  70. Eckert EA, Beard D, Beard JW . Dose-response relations in experimental transmission of avian erythromyeloblastic leukosis. I. Host-response to the virus J Natl Cancer Inst 1951 12: 447–463

    CAS  PubMed  Google Scholar 

  71. Leprince D, Gegonne A, Coll J, Taisne A, Schneeberger A, Lagrou C, Stehelin D . A putative second cell-derived oncogene of the avian leukemia retrovirus E26 Nature 1983 306: 395–397

    Article  CAS  PubMed  Google Scholar 

  72. Kanter MR, Smith RE, Hayward WS . Rapid induction of B cell lymphomas: insertional activation of c-myb by avian leukosis virus J Virol 1988 62: 1423–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pizer E, Humphries EH . Rav-1 insertional mutagenesis: disruption of the c-myb locus and development of avian B cell lymphomas J Virol 1989 63: 1630–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pizer ES, Baba TW, Humphries EH . Activation of the c-myb locus is insufficient for the rapid induction of disseminated avian B cell lymphoma J Virol 1992 66: 512–523

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rouzic E, Perbal B . Retroviral insertional activation of the c-myb proto-oncogene in a Marek's disease T-lymphoma cell line J Virol 1996 70: 7414–7423

    PubMed  PubMed Central  Google Scholar 

  76. Gonda TJ, Cory S, Sobieszczuk P, Holtzman D, Adams JM . Generation of altered transcripts by retroviral insertion within the c-myb gene in two murine monocytic leukemias J Virol 1987 61: 2754–2763

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nason-Burchenal K, Wolff L . Activation of c-myb is an early bone-marrow event in a murine model for acute promonocytic leukemia Proc Natl Acad Sci USA 1993 90: 1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen-Ong GL, Morse HC, Potter M, Mushinski JF . Two modes of c-myb activation in virus-induced mouse myeloid tumors Mol Cell Biol 1986 6: 380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kastan MB, Stone KD, Civin CI . Nuclear oncoprotein expression as a function of lineage, differentiation stage, and proliferative status of normal human hematopoietic cells Blood 1989 74: 1517–1524

    CAS  PubMed  Google Scholar 

  80. Sitzmann J, Noben-Trauth K, Klempnauer KH . Expression of mouse c-myb during embryonic development Oncogene 1995 11: 2273–2279

    CAS  PubMed  Google Scholar 

  81. Duprey SP, Boettiger D . Developmental regulation of c-myb in normal myeloid progenitor cells Proc Natl Acad Sci USA 1985 82: 6937–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gonda TJ, Metcalf D . Expression of myb, myc, and fos protooncogenes during the differentiation of a murine myeloid leukemia Nature 1984 310: 249–251

    Article  CAS  PubMed  Google Scholar 

  83. Westin EH, Gallo C, Arya SK, Eva A, Souza LM, Baluda MA, Aaronson SA, Wong-Staal F . Differential expression of the amv gene in human hematopoietic cells Proc Natl Acad Sci USA 1982 79: 2194–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weston K . Myb proteins in life, death and differentiation Curr Opin Genet Dev 1998 8: 76–81

    Article  CAS  PubMed  Google Scholar 

  85. Wolff L . Myb-induced transformation Crit Rev Oncog 1996 7: 245–260

    Article  CAS  PubMed  Google Scholar 

  86. Frampton J, Ramqvist T, Graf T . v-Myb of E26 Leukemia virus up-regulates bcl-2 and suppresses apoptosis in myeloid cells Genes Dev 1996 10: 2720–2731

    Article  CAS  PubMed  Google Scholar 

  87. Taylor D, Badiani P, Weston K . A dominant interfering Myb mutant causes apoptosis in T cells Genes Dev 1996 10: 2732–2744

    Article  CAS  PubMed  Google Scholar 

  88. Badiani P, Corbella P, Kioussis D, Marvel J, Weston K . Dominant interfering alleles define a role for c-Myb in T-cell development Genes Dev 1994 8: 770–782

    Article  CAS  PubMed  Google Scholar 

  89. Schmidt M, Nazarov V, Stevens L, Watson R, Wolff L . Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis Mol Cell Biol 2000 20: 1970–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ku DH, Wen SC, Engelhard A, Nicolaides NC, Lipson KE, Marino TA, Calabretta B . c-myb transactivates cdc2 expression via Myb binding sites in the 5′-flanking region of the human cdc2 gene J Biol Chem 1993 268: 2255–2259

    CAS  PubMed  Google Scholar 

  91. Shivdassani RA, Orkin SH . The transcriptional control of hematopoiesis Blood 1996 87: 4025–4039

    Google Scholar 

  92. Todokoro K, Watson RJ, Higo H, Amanuma H, Kuramochi S, Yanagisawa H, Ikawa Y . Down-regulation of c-myb gene expression is a prerequisite for erythropoietin-induced erythroid differentiation Proc Natl Acad Sci USA 1988 85: 8900–8904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sudo T, Miyazawa H, Hanaoka F, Ishii S . The c-myb proto-oncogene product binds to but does not activate the promoter of the DNA polymerase alpha gene Oncogene 1992 7: 1999–2006

    CAS  PubMed  Google Scholar 

  94. Hogg A, Schirm S, Nakagoshi H, Bartley P, Ishii S, Bishop JM, Gonda TJ . Inactivation of a c-Myb/estrogen receptor fusionprotein in transformed primary cells leads to granulocyte/macrophage differentiation and down regulation of c-kit, but not c-myc or cdc2 Oncogene 1997 15: 2885–2898

    Article  CAS  PubMed  Google Scholar 

  95. Ratajczak MZ, Perrotti D, Melotti P, Powzaniuk M, Calabretta B, Onodera K, Kregenow DA, Machalinski B, Gewirtz AM . Myb and its proteins are candidate regulators of c-kit expression in human hematopoietic cells Blood 1998 91: 1934–1946

    CAS  PubMed  Google Scholar 

  96. Vandenbark GR, Chen Y, Friday E, Pavlik K, Anthony B, deCastro C, Kaufman RE . Complex regulation of human c-kit transcription by promoter repressors, activators, and specific myb elements Cell Growth Differ 1996 7: 1383–1392

    CAS  PubMed  Google Scholar 

  97. Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JP . Mechanism of c-myc regulation by c-Myb in different cell lineages Mol Cell Biol 1993 13: 2858–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Evans JL, Moore TL, Kuehl WM, Bender T, Ting JP . Functional analysis of c-Myb protein in T-lymphocytic cell lines shows that it trans-activates the c-myc promoter Mol Cell Biol 1990 10: 5747–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zobel A, Kalkbrenner F, Vorbrueggen G, Moelling K . Transactivation of the human c-myc gene by c-Myb Biochem Biophys Res Commun 1992 186: 715–722

    Article  CAS  PubMed  Google Scholar 

  100. Gewirtz AM, Calabretta B . A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro Science 1988 242: 1303–1306

    Article  CAS  PubMed  Google Scholar 

  101. Clarke MF, Kukowska-Latallo JF, Westin E, Smith M, Prochownik E . Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation Mol Cell Biol 1988 8: 884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yanagisawa H, Nagasawa T, Kuramochi S, Abe T, Ikawa Y, Todokoro K . Constitutive expression of exogenous c-myb gene causes maturation block in monocyte-macrophage differentiation Biochim Biophys Acta 1991 1088: 380–384

    Article  CAS  PubMed  Google Scholar 

  103. Gopal V, Hulette B, Li YQ, Kuvelkar R, Raza A, Larson R, Goldberg J, Tricot G, Bennett J, Preisler H . c-myc and c-myb expression in acute myeloid leukemia Leukemia Res 1992 16: 1003–1011

    Article  CAS  Google Scholar 

  104. Muller C, Yang R, Idos G, Tidow N, Diederichs S, Koch OM, Verbeek W, Bender TP, Koeffler HP . c-myb transactivates the human cyclin A1 promoter and induces cyclin A1 gene expression Blood 1999 94: 4255–4262

    CAS  PubMed  Google Scholar 

  105. Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y, Hirai H . Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation Blood 1995 85: 2017–2024

    CAS  PubMed  Google Scholar 

  106. Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD . Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia Proc Natl Acad Sci USA 1994 91: 12110–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shilatifard A . Identification and purification of the Holo-ELL complex J Biol Chem 1998 273: 11212–11217

    Article  CAS  PubMed  Google Scholar 

  108. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW . An RNA polymerase II elongation factor encoded by the human ELL gene Science 1996 271: 1873–1876

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt A, Miller T, Schmidt S, Shiekhattar R, Shilatifard A . Cloning and characterization of the EAP30 subunit of the ELL complex that confers derepression of transcription by RNA polymerase II J Biol Chem 1999 274: 21981–21985

    Article  CAS  PubMed  Google Scholar 

  110. Shilatifard A . Factors regulating the transcriptional elongation activity of RNA polymerase II FASEB J 1998 12: 1437–1446

    Article  CAS  PubMed  Google Scholar 

  111. Reines D, Conaway JW, Conaway RC . The RNA polymerase II general elongation factors Trends Biochem Sci 1996 21: 351–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shilatifard A, Conaway JW, Conaway RC . Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II Curr Opin Genet Dev 1997 7: 199–204

    Article  CAS  PubMed  Google Scholar 

  113. Shilatifard A, Haque D, Conaway RC, Conaway JW . Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex J Biol Chem 1997 272: 22355–22363

    Article  CAS  PubMed  Google Scholar 

  114. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias Cell 1992 71: 691–700

    Article  CAS  PubMed  Google Scholar 

  115. Rowley JD . Backtracking leukemia to birth Nat Med 1998 4: 150–151

    Article  CAS  PubMed  Google Scholar 

  116. Chrivia JC, Kwok RPS, Lamb N, Hagiwara M, Montminy MR, Goodman RH . Phosphorylated CREB binds specifically to the nuclear protein CBP Nature 1993 365: 855–859

    Article  CAS  PubMed  Google Scholar 

  117. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM . Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kDa protein (p300) reveals a protein with properties of a transcriptional adapter Genes Dev 1994 8: 869–884

    Article  CAS  PubMed  Google Scholar 

  118. Lundblad JR, Kwok RPS, Laurance ME, Harter ML, Goodman RH . Adenovirus E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP Nature 1995 374: 85–88

    Article  CAS  PubMed  Google Scholar 

  119. Cho H, Orphanides G, Sun X, Yang X-J, Ogryzko V, Lees E, Nakatani Y, Reinberg D . A human RNA polymerase II complex containing factors that modify chromatin structure Mol Cell Biol 1998 18: 5355–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kee B, Arias J, Montminy M . Adapter mediated recruitment of RNA polymerase II to a signal dependent activator J Biol Chem 1996 271: 2373–2375

    Article  CAS  PubMed  Google Scholar 

  121. Nakajima T, Uchida C, Anderson S, Lee C, Hurwitz J, Parvin J, Montminy M . RNA helicase A mediates association of CBP with RNA polymerase II Cell 1997 90: 1107–1112

    Article  CAS  PubMed  Google Scholar 

  122. McKenna N, Nawaz Z, Tsai S, Tsai M, O'Malley B . Distinct steady-state nuclear receptor coregulator complexes exist in vivo Proc Natl Acad Sci USA 1998 95: 11697–11702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RSK, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE . The translocation t(8;16)(p11;q13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein Nat. Genet 1996 14: 33–41

    Article  CAS  PubMed  Google Scholar 

  124. Goodman RH, Smolik S . CBP/p300 in cell growth, transformation, and development Genes Dev 2000 14: 1553–1577

    CAS  PubMed  Google Scholar 

  125. Eckner R, Yao T-P, Oldread E, Livingston DM . Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B cells differentiation Genes Dev 1996 10: 2478–2490

    Article  CAS  PubMed  Google Scholar 

  126. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfield MG . A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors Cell 1996 85: 403–414

    Article  CAS  PubMed  Google Scholar 

  127. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM . Role of CBP/p300 in nuclear receptor signaling Nature 1996 383: 99–103

    Article  CAS  PubMed  Google Scholar 

  128. Yao T-P, Ku G, Zhou N, Scully R, Livingston DM . The nuclear hormone receptor coactivator SRC-1 is a specific target of p300 Proc Natl Acad Sci USA 1996 93: 10626–10631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Blobel, G . A. CREB-binding protein and p300: molecular integrators of hematopoietic transcription Blood 2000 95: 745–755

    CAS  PubMed  Google Scholar 

  130. Reifsnyder C, Lowell J, Clarke A, Pillus L . Yeast SAS silencing genes and human genes associated with AML and HIV Tat interactions are homologous with acetyltransferases Nat Genet 1996 14: 42–49

    Article  CAS  PubMed  Google Scholar 

  131. Taki T, Sako M, Tsuchida M, Hayashi Y . The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene Blood 1997 89: 3945–3950

    CAS  PubMed  Google Scholar 

  132. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y . Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13) Blood 1997 90: 4699–4704

    CAS  PubMed  Google Scholar 

  133. Kitabayashi I, Yokoyama A, Shimizu K, Ohki M . Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation EMBO J 1998 17: 2994–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA . CREB-binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites Mol Cell Biol 1999 19: 3496–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L, Torchia J, Rosenfeld MG, Glass CK . Differential use of CREB binding protein-coactivator complexes Science 1998 279: 700–703

    Article  CAS  PubMed  Google Scholar 

  136. Jean D, Harbison M, McConkey D, Ronai Z, Bar-Eli M . CREB and its associated proteins act as survival factors for human melanoma cells J Biol Chem 1998 273: 24884–24890

    Article  CAS  PubMed  Google Scholar 

  137. Montminy M . Transcriptional regulation by cyclic AMP Annu Rev Biochem 1997 66: 807–822

    Article  CAS  PubMed  Google Scholar 

  138. Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM . A cyclic AMP-and phorbol ester-inducible DNA element Nature 1986 323: 353–356

    Article  CAS  PubMed  Google Scholar 

  139. Silva AJ, Kogan JH, Frankland PW, Kida S . CREB and memory Annu Rev Neurosci 1998 21: 127–148

    Article  CAS  PubMed  Google Scholar 

  140. Lalli E, Lee JS, Masquilier D, Schlotter F, Foulkes NS, Molina C, Sassone-Corsi P . Nuclear response to cyclic AMP: central role of transcription factor CREM (cyclic-AMP-responsive-element modulator) Biochem Soc Trans 1993 21: 912–917

    Article  CAS  PubMed  Google Scholar 

  141. Kwon E, Raines MA, Blenis J, Sakamoto KM . Granulocyte–macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK Blood 2000 95: 2552–2558

    CAS  PubMed  Google Scholar 

  142. Joseph DE, Paul CC, Baumann MA, Gomez-Cambronero J . S6 kinase p90rsk in granulocyte-macrophage colony-stimulating factor-stimulated proliferative and mature hematopoietic cells J Biol Chem 1996 271: 13088–13093

    Article  CAS  PubMed  Google Scholar 

  143. Gonzalez GA, Montminy MR . Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133 Cell 1989 59: 675–680

    Article  CAS  PubMed  Google Scholar 

  144. Arias J, Alberts A, Brindle P, Claret F, Smeal M, Karin M, Feramisco J, Montminy M . Activation of cAMP and mitogen responsive genes relies on a common nuclear factor Nature 1994 370: 226–228

    Article  CAS  PubMed  Google Scholar 

  145. Kwok R, Lundblad J, Chrivia J, Richards J, Bachinger H, Brennan R, Roberts S, Green M, Goodman R . Nuclear protein CBP is a coactivator for the transcription factor CREB Nature 1994 370: 223–226

    Article  CAS  PubMed  Google Scholar 

  146. Nakajima T, Uchida C, Anderson S, Parvin J, Montminy M . Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via a signal-dependent factors Genes Dev 1997 11: 738–747

    Article  CAS  PubMed  Google Scholar 

  147. Ginty DD, Bonni A, Greenberg ME . Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB Cell 1994 77: 713–725

    Article  PubMed  Google Scholar 

  148. Lalli E, Sassone-Corsi P . Signal transduction and gene regulation: the nuclear response to cAMP J Biol Chem 1994 269: 17359–17362

    CAS  PubMed  Google Scholar 

  149. Lee HJ, Mignacca RC, Sakamoto KM . Transcriptional activation of egr-1 by granulocyte–macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133 J Biol Chem 1995 270: 15979–15983

    Article  CAS  PubMed  Google Scholar 

  150. Sakamoto K, Fraser J, Lee H, Lehman E, Gasson J . Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter Mol Cell Biol 1994 14: 5975–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Burgering BMT, Pronk G, Weeren PCv, Chardin P, Bos JL . cAMP antagonizes p21 ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor EMBO J 1993 12: 4211–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vairo G, Argyriou S, Bordun A-M, Whitty G, Hamilton JA . Inhibition of the signaling pathways for macrophage proliferation by cyclic AMP. Lack of effect on early responses to colony stimulating factor-I J Biol Chem 1990 265: 2692–2701

    CAS  PubMed  Google Scholar 

  153. Dang CV, Resar LMS, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K . Function of the c-Myc oncogenic transcription factor Exp Cell Res 1999 253: 63–77

    Article  CAS  PubMed  Google Scholar 

  154. Cole MD . The myc oncogene: its role in transformation and differentiation Annu Rev Genet 1986 20: 361–384

    Article  CAS  PubMed  Google Scholar 

  155. Luscher B, Christenson E, Litchfield DW, Krebs EG, Eisenman RN . Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation Nature 1990 344: 517–522

    Article  CAS  PubMed  Google Scholar 

  156. Boyd KE, Farnham PJ . Identification of target genes of oncogenic transcription factors Proc Soc Exp Biol Med 1999 222: 9–28

    Article  CAS  PubMed  Google Scholar 

  157. Dang CV . c-Myc targets genes involved in cell growth, apoptosis, and metabolism Mol Cell Biol 1999 19: 1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. DePinho RA, Schreiber-Agus N, Alt FW . Myc family oncogenes in the development of normal and neoplastic cells Adv Cancer Res 1991 57: 1–46

    Article  CAS  PubMed  Google Scholar 

  159. Henriksson M, Luscher B . Proteins of the Myc network: essential regulators of cell growth and differentiation Adv Cancer Res 1996 68: 109–182

    Article  CAS  PubMed  Google Scholar 

  160. Lemaitre JM, Buckle RS, Mechali M . c-Myc in the control of cell proliferation and embryonic development Adv Cancer Res 1996 70: 95–144

    Article  CAS  PubMed  Google Scholar 

  161. Marcu KB, Bossone SA, Patel AJ . Myc function and regulation Annu Rev Biochem 1992 61: 809–860

    Article  CAS  PubMed  Google Scholar 

  162. Battey J, Moulding C, Taub R, Murphy W, Stewart T, Potter H, Lenoir G, Leder P . The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma Cell 1983 34: 779–787

    Article  CAS  PubMed  Google Scholar 

  163. Bishop JM . Retroviruses and cancer genes Adv Cancer Res 1982 37: 1–32

    Article  CAS  PubMed  Google Scholar 

  164. Bister K, Jansen HW . Oncogenes in retroviruses and cells: biochemistry and molecular genetics Adv Cancer Res 1986 47: 99–188

    Article  CAS  PubMed  Google Scholar 

  165. Sheiness D, Fanshier L, Bishop JM . Identification of nucleotide sequences which may encode the oncogenetic capacity of avian retrovirus MC29 J Virol 1978 28: 600–610

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sheiness DK, Hughes SH, Varmus HE, Stubblefield E, Bishop JM . The vertebrate homolog of the putative transforming gene of avian myelocytomatosis virus: characteristics of the DNA locus and its RNA transcript Virology 1980 105: 415–424

    Article  CAS  PubMed  Google Scholar 

  167. Davis AC, Wims M, Spotts GD, Hann SR, Bradley A . A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice Genes Dev 1993 7: 671–682

    Article  CAS  PubMed  Google Scholar 

  168. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination Cell Growth Diff 1997 8: 1039–1048

    CAS  PubMed  Google Scholar 

  169. Croce CM . Molecular biology of lymphomas Semin Oncol 1993 20: 31–46

    CAS  PubMed  Google Scholar 

  170. Chang DW, Claassen GF, Hann SR, Cole MD . The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals Mol Cell Biol 2000 20: 4309–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I . Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas Nat Genet 1993 5: 56–61

    Article  CAS  PubMed  Google Scholar 

  172. Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I . Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas Blood 1994 84: 883–888

    CAS  PubMed  Google Scholar 

  173. Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M . Mutations in the coding region of c-Myc in AIDS-associated and other aggressive lymphomas Cancer Res 1994 54: 3383–3386

    CAS  PubMed  Google Scholar 

  174. Gu W, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R . Binding and suppression of the Myc transcriptional activation domain by p107 Science 1994 264: 251–254

    Article  CAS  PubMed  Google Scholar 

  175. Hoang AT, Lutterbach B, Lewis BC, Yano T, Chou TY, Barrett JF, Raffeld M, Hann SR, Dang CV . A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain Mol Cell Biol 1995 15: 4031–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Smith-Sorensen B, Hijmans EM, Beijersbergen RL, Bernards R . Functional analysis of Burkitt's lymphoma mutant c-Myc proteins J Biol Chem 1996 271: 5513–5518

    Article  CAS  PubMed  Google Scholar 

  177. Sitailo S, Sood R, Barton K, Nucifora G . Forced expression of the leukemia-associated gene EVI1 in ES cells: a model for myeloid leukemia with 3q26 rearrangements Leukemia 1999 13: 1639–1645

    Article  CAS  PubMed  Google Scholar 

  178. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, Kishi K, Asano S, Sakaki Y, Sato Y . A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation Blood 2000 95: 2126–2131

    CAS  PubMed  Google Scholar 

  179. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, VanRompaey L, Baens M, Van den Berghe H, Marynen P . Fusion of TEL, the ETS-variant gene 6 (ETV6) to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia Blood 1997 90: 2535–2540

    CAS  PubMed  Google Scholar 

  180. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffe M, Mayeux P, Gouilleux F, Berger R, Gisselbrecht S, Ghysdael J, Bernard OA . Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells Blood 2000 95: 2076–2083

    CAS  PubMed  Google Scholar 

  181. Carron C, Cormier F, Janin A, Lacronique V, Giovannini M, Daniel M, Bernard O, Ghysdael J . TEL-JAK2 transgenic mice develop T-cell leukemia Blood 2000 95: 3891–3899

    CAS  PubMed  Google Scholar 

  182. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation Cell 1994 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  183. Salomon-Nguyen F, Della-Valle V, Mauchauffe M, Coniat MB-L, Ghysdael J, Berger R, Bernard OA . The t(1;12)(q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion Proc Natl Acad Sci USA 2000 97: 6757–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Karim F, Urness L, Thummel C, Klemsz M, McKercher S, Celada A, Beveren CV, Maki R, Gunther C, Nye J . The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence Genes Dev 1990 4: 1451–1453

    Article  CAS  PubMed  Google Scholar 

  185. Poirel H, Oury C, Carron C, Duprez E, Laabi Y, Tsapis A, Romana SP, Mauchauffe M, LeConiat M, Berger R, Ghysdael J, Bernard OA . The TEL gene products: nuclear phosphoproteins with DNA binding properties Oncogene 1997 14: 349–357

    Article  CAS  PubMed  Google Scholar 

  186. Rubnitz JE, Pui C, Downing JR . The role of TEL fusion gene in pediatric leukemias Leukemia 1999 13: 6–13

    Article  CAS  PubMed  Google Scholar 

  187. Wasylyk B, Hann SL, Giovane A . The Ets family of transcription factors Euro J Biochem 1993 211: 7–18

    Article  CAS  Google Scholar 

  188. Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter-Fourt I, Charon M, Levin J, Bernard O, Ghysdael J . A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFRβ oncoprotein EMBO J 1997 16: 69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG . Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia Mol Cell Biol 1996 16: 4107–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McLean TW, Ringold S, Neuberg D . TEL/AML1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia Blood 1996 88: 4252–4258

    CAS  PubMed  Google Scholar 

  191. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG . The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways Proc Natl Acad Sci USA 1996 93: 14845–14850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH . Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL EMBO J 1997 16: 4374–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F, Alt FW, Gilliland DG, Golub TR, Orkin SH . The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow Genes Dev 1998 12: 2392–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA . A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia Science 1997 278: 1309–1312

    Article  CAS  PubMed  Google Scholar 

  195. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS, Peeters P, Van Rompaey L, Van Etten RA, Ilaria R Jr, Marynen P, Gilliland DG . Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes EMBO J 1998 17: 5321–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ho JMY, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling Blood 1999 93: 4354–4364

    CAS  PubMed  Google Scholar 

  197. Hiyoshi M, Koh KR, Yamane T, Tatsumi N . Acute non-lymphoblastic leukaemia with t(16;21): case report with a review of the literature Clin Lab Haematol 1995 17: 243–246

    CAS  PubMed  Google Scholar 

  198. Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N, Kaneko Y, Sako M, Kobayashi Y, Tojou A, Miura I, Kakuda H, Funabiki T, Horibe K, Hamaguchi H, Akiyama Y, Bessho F, Yanagisawa M, Hayashi Y . Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript Blood 1997 90: 1192–1199

    CAS  PubMed  Google Scholar 

  199. Ichikawa H, Shimizu K, Hayashi Y, Ohki M . An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation Cancer Res 1994 54: 2865–2868

    CAS  PubMed  Google Scholar 

  200. Crozat A, Aman P, Mandahl N, Ron D . Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma Nature 1993 363: 640–644

    Article  CAS  PubMed  Google Scholar 

  201. Rabbitts TH, Forster A, Larson R, Nathan P . Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant sarcoma Nat Genet 1993 4: 175–180

    Article  CAS  PubMed  Google Scholar 

  202. Prasad DDK, Ouchida M, Lee L, Rao VN, Reddy ESP . TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain Oncogene 1994 9: 3717–3729

    CAS  PubMed  Google Scholar 

  203. Yang L, Embree LJ, Hickstein DD . TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins Mol Cell Biol 2000 20: 3345–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Reddy ESP, Rao VN, Papas TS . The erg gene: a human gene related to the ets oncogene Proc Natl Acad Sci USA 1987 84: 6131–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Siddique HR, Rao VN, Lee L, Reddy ESP . Characterization of the DNA-binding and transcriptional activation domains of the erg protein Oncogene 1993 8: 1751–1755

    CAS  PubMed  Google Scholar 

  206. Pereira DS, Dorrell C, Ito CY, Gan OI, Murdoch B, Rao VN, Zou JP, Reddy ESP, Dick JE . Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells Proc Natl Acad Sci USA 1998 95: 8239–8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mui AL, Wakao H, O'Farrell AM, Harada N, Miyajima A . Interleukin-3, granulocyte-macrophage colony-stimulating factor and interleukin-5 transduce signals through two STAT5 homologs EMBO J 1995 14: 1166–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tuyt LML, Bregman K, Lummen C, Dokter WHA, Vellenga E . Differential binding activity of the transcription factor LIL-Stat in immature and differentiated normal and leukemic myeloid cells Blood 1998 92: 1364–1373

    CAS  PubMed  Google Scholar 

  209. Darnell JE . STATS and gene regulation Science 1997 277: 1630–1635

    Article  CAS  PubMed  Google Scholar 

  210. Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD . Regulation of granulopoiesis by transcription factors and cytokine signals Leukemia 2000 14: 973–990

    Article  CAS  PubMed  Google Scholar 

  211. Darnell JE, Kerr IM, Stark GR . JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular proteins Science 1994 264: 1415–1421

    Article  CAS  PubMed  Google Scholar 

  212. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider NB, Silvennoinen O . Signaling by the cytokine receptor superfamily: JAKs and STATs Trends Biochem Sci 1994 19: 222–227

    Article  CAS  PubMed  Google Scholar 

  213. Epner DE, Koeffler HP . Molecular genetics of advances in chronic myelogenous leukemia Ann Intern Med 1990 113: 3–9

    Article  CAS  PubMed  Google Scholar 

  214. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T . Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis J Exp Med 1999 189: 1229–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells Blood 2000 95: 2118–2125

    CAS  PubMed  Google Scholar 

  216. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis Blood 2000 95: 19–29

    CAS  PubMed  Google Scholar 

  217. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues J Clin Invest 1997 100: 3140–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Jurlander J, Lai CF, Tan J, Chou CC, Geisler CH, Schriber J, Blumenson LE, Narula SK, Baumann H, Caligiuri MA . Characterization of interleukin-10 receptor expression on B-cell chronic lymphocytic leukemia cells Blood 1997 89: 4146–4152

    CAS  PubMed  Google Scholar 

  219. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H . Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia EMBO J 1994 13: 504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Johansson B, Fioretos T, Garwicz S, Heim S, Mitelman F . t(3;21)(q26;q22) with AML1 rearrangement in a de novo childhood acute monoblastic leukaemia Br J Haematol 1996 92: 429–431

    Article  CAS  PubMed  Google Scholar 

  221. Nucifora G, Begy CR, Erickson R, Drabkin HA, Rowley JD . The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein–Barr virus small RNA EBER 1 Proc Natl Acad Sci USA 1993 90: 7784–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Morishita K, Parker DS, Mucenski ML, Copeland NG, Ihle JN . Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines Cell 1988 54: 831–840

    Article  CAS  PubMed  Google Scholar 

  223. Matsugi T, Morishita K, Ihle JN . Identification, nuclear localization, and DNA-binding activity of the zinc finger protein encoded by the Evi-1 myeloid transforming gene Mol Cell Biol 1990 10: 1259–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Perkins AS, Fishel R, Jenkins NA, Copeland NG . Evi-1, a murine zinc finger proto-oncogene, encodes a sequence specific DNA-binding protein Mol Cell Biol 1991 11: 2665–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN . Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence specific binding to GA(C/T)AAGA(T/C)AAGATAA Mol Cell Biol 1993 13: 4291–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Perkins AS, Kim JH . Zinc fingers 1–7 of EVI1 fail to bind to the GATA motif by itself but require the core site GACAAGATA for binding J Biol Chem 1996 271: 1104–1110

    Article  CAS  PubMed  Google Scholar 

  227. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML Proc Natl Acad Sci USA 2000 97: 1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tanaka K, Tanaka T, Ogawa S, Kurokawa M, Mitani K, Yazaki Y, Hirai H . Increased expression of AML1 during retinoic-acid-induced differentiation of U937 cells Biochem Biophys Res Comm 1995 211: 1023–1030

    Article  CAS  PubMed  Google Scholar 

  229. Tanaka T, Mitani K, Kurokawa, M, Ogawa S, Tanaka K, Nishida J, Yazaki Y, Shibata Y, Hirai, H . Dual functions of the AML/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias Mol Cell Biol 1995 15: 2383–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G . MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth inhibition in response to TGF-beta1 Leukemia 1999 13: 348–357

    Article  CAS  PubMed  Google Scholar 

  231. Goddard AD, Borrow PS, Freemont PS, Solomon E . Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia Science 1991 254: 1371–1374

    Article  CAS  PubMed  Google Scholar 

  232. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty V, Dmitrovsky E, Evans RM . Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML Cell 1991 66: 663–674

    Article  CAS  PubMed  Google Scholar 

  233. Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, Grignani F, Pelicci PG . Structure and origin of the acute promyelocytic leukemia myl/RARα cDNA and characterization of its retinoid-binding and transactivation properties Oncogene 1991 6: 1285–1292

    CAS  PubMed  Google Scholar 

  234. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML/RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR Cell 1991 66: 675–684

    Article  PubMed  Google Scholar 

  235. Giguere V, Ong ES, Segui P, Evans RM . Identification of a receptor for the morphogene retinoic acid Nature 1987 330: 624–629

    Article  CAS  PubMed  Google Scholar 

  236. Petkovich M, Brand NJ, Krust A, Chambon P . A human retinoic acid receptor which belongs to the family of nuclear receptors Nature 1987 330: 444–450

    Article  CAS  PubMed  Google Scholar 

  237. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM . The nuclear receptor superfamily-the 2nd decade Cell 1995 83: 835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Leid M, Kastner P, Chambon P . Multiplicity generates diversity in the retinoic acid signalling pathways Trends Biochem Sci 1992 17: 427–433

    Article  CAS  PubMed  Google Scholar 

  239. Chambon P . The molecular and genetic dissection of the retinoid signaling pathway Rec Prog Horm Res 1995 50: 317–332

    CAS  PubMed  Google Scholar 

  240. Chambon P . A decade of molecular biology of retinoic acid receptors FASEB J 1996 10: 940–954

    Article  CAS  PubMed  Google Scholar 

  241. Sternsdorf T, Grotzinger T, Jensen K, Will H . Nuclear dots: actors on many stages Immunobiology 1997 198: 307–331

    Article  CAS  PubMed  Google Scholar 

  242. Ahn JH, Brignole EJ, Hayward GS . Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML Mol Cell Biol 1998 18: 4899–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Vallian S . Transcriptional repression by the promyelocytic leukaemia protein, PML Exp Cell Res 1997 237: 371–382

    Article  CAS  PubMed  Google Scholar 

  244. Zhong S, Salomoni P, Pandolfi PP . The transcriptional role of PML and the nuclear body Nature Cell Biol 2000 2: E85-E90

    Article  CAS  Google Scholar 

  245. Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP . A role for PML and the nuclear body in genomic stability Oncogene 1999 18: 7941–7947

    Article  CAS  PubMed  Google Scholar 

  246. Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JFI, Maul GG . PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1 J Cell Biol 1999 147: 221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Testa U, Grignani F, Hassan HJ, Rogaia D, Masciulli R, Gelmetti V, Guerriero R, Macioce G, Liberatore C, Barberi T, Mariani G, Pelicci PG, Peschle C . Terminal megakaryocytic differentiation of TF-1 cells is induced by phorbol esters and thrombopoietin and is blocked by expression of PML/RARα fusion protein Leukemia 1998 12: 563–570

    Article  CAS  PubMed  Google Scholar 

  248. Huang ME, Ye YC, Chen SR, Cai JR, Lu JX, Zhao L, Gu RJ, Wang ZY . Use of all-trans retinoic acid in the treatment of acute promyelocytic leukaemia Blood 1988 72: 567–572

    CAS  PubMed  Google Scholar 

  249. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P . PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR EMBO J 1993 12: 3171–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Licht JD, Shaknovich R, English MA, Melnick A, Li J, Reddy JC, Dong S, Chen S, Zelent A, Waxman S . Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-α chimer generated in t(11;17)-associated acute promyelocytic leukemia Oncogene 1996 12: 323–336

    CAS  PubMed  Google Scholar 

  251. Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong H, Wang Z, Waxman S, Chomienne C, Zelent A, Chen S . Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for the activities of the promyelocytic leukaemia zinc finger-retinoic acid receptor-α fusion protein Proc Natl Acad Sci USA 1996 93: 3624–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A . Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia EMBO J 1993 12: 1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion Blood 1996 87: 882–886

    CAS  PubMed  Google Scholar 

  254. Salomoni P, Pandolfi PP . Transcriptional regulation of cellular transformation Nature Med 2000 6: 742–744

    Article  CAS  PubMed  Google Scholar 

  255. Wells RA, Catzavelos C, Kamel-Reid S . Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia Nat Genet 1997 17: 109–113

    Article  CAS  PubMed  Google Scholar 

  256. Wong C, Privalsky ML . Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARα, and BCL-6 J Biol Chem 1998 273: 27695–27702

    Article  CAS  PubMed  Google Scholar 

  257. Hong S, David G, Wong C, Dejean A, Privalsky ML . SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia Proc Natl Acad Sci USA 1997 94: 9028–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Grignani F, DeMatteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fannelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG . Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia Nature 1998 391: 815–818

    Article  CAS  PubMed  Google Scholar 

  259. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia Nature 1998 391: 811–814

    Article  CAS  PubMed  Google Scholar 

  260. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP . Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL Nat Genet 1998 18: 126–135

    Article  CAS  PubMed  Google Scholar 

  261. Moreau-Gachelin F . Spi-1/PU.1: an oncogene of the Ets family Biochim Biophys Acta 1994 1198: 149–163

    PubMed  Google Scholar 

  262. Hromas R, Klemsz M . The ETS oncogene family in development, proliferation and neoplasia Int J Hematol 1994 59: 257–265

    CAS  PubMed  Google Scholar 

  263. Guerriero A, Langmuir PB, Spain LM, Scott EW . PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells Blood 2000 95: 879–885

    CAS  PubMed  Google Scholar 

  264. Dittmer J, Nordheim A . Ets transcription factors and human disease Biochim Biophys Acta 1998 1377: F1–F11

    CAS  PubMed  Google Scholar 

  265. Klemsz MJ, McKercher SR, Celada A, Beveren CV, Maki RA . The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene Cell 1990 61: 113–124

    Article  CAS  PubMed  Google Scholar 

  266. Hoatlin ME, Kozak SL, Lilly F, Chakraborti A, Kozak CA, Kabat D . Activation of erythropoietin receptors by Friend viral gp55 and by erythropoietin and down-modulation by the murine Fv-2r resistance gene Proc Natl Acad Sci USA 1990 87: 9985–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Li JP, D'Andrea AD, Lodish HF, Baltimore D . Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor Nature 1990 343: 762–764

    Article  CAS  PubMed  Google Scholar 

  268. Ben-David Y, Lavigueur A, Cheong GY, Bernstein A . Insertional activation of the p53 gene during Friend leukemia: a new strategy for identifying tumor suppressor genes New Biol 1990 2: 1015–1023

    CAS  PubMed  Google Scholar 

  269. Munroe DG, Peacock JW, Benchimol S . Inactivation of the cellular p53 gene is a common feature of Friend virus-induced erythroleukemia: relationship of inactivation to dominant transforming alleles Mol Cell Biol 1990 10: 3307–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ben-David Y, Bernstein A . Friend virus-induced erythroleukemia and the multistage nature of cancer Cell 1991 66: 831–834

    Article  CAS  PubMed  Google Scholar 

  271. Schuetze S, Paul R, Gliniak BC, Kabat D . Role of the PU.1 transcription factor in controlling differentiation of Friend erythroleukemia cells Mol Cell Biol 1992 12: 2967–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Schuetze S, Stenberg PE, Kabat D . The ETS-related transcription factor PU.1 immortalizes erythroblasts Mol Cell Biol 1993 13: 5670–5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W, Tavitian A . Spi-1/PU.1 transgenic mice develop multistep erythroleukemias Mol Cell Biol 1996 16: 2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Bockamp E, Fordham JL, Gottgens B, Murrell AM, Sanchez M, Green AR . Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1 J Biol Chem 1998 273: 29032–29042

    Article  CAS  PubMed  Google Scholar 

  275. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield MS, Haynes BF, Cohen DI, Waldmann TA, Kirsch IR . Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript Proc Natl Acad Sci USA 1989 86: 2031–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, Baer R . Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia EMBO J 1990 9: 3343–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chen Q, Cheng JT, Tsai LH, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ, Baer R . The tal-1 gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein EMBO J 1990 9: 415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Finger LR, Kagan J, Christopher G, Kutzberg J, Hershfield MS, Nowell PC, Croce C . Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma Proc Natl Acad Sci USA 1989 86: 5039–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Condorelli GL, Tocci A, Botta R, Facchiano F, Testa U, Vitelli L, Valtieri M, Croce CM, Peschle C . Ectopic TAL-1/SCL expression in phenotypically normal leukemic myeloid precursors: proliferative and antiapoptotic effects coupled with a differentiation blockade Mol Cell Biol 1997 17: 2954–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Leroy-Viard K, Vinit M, Lecointe N, Jouault H, Hibner U, Romeo P, Mathieu-Mahul D . Loss of TAL-1 protein activity induces premature apoptosis of Jurkat leukemic T cells upon medium depletion EMBO J 1995 14: 2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia Blood 1997 90: 489–519

    CAS  PubMed  Google Scholar 

  282. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages Science 1994 265: 1573–1577

    Article  CAS  PubMed  Google Scholar 

  283. Iida H, Towatari M, Iida M, Tanimoto M, Kodera Y, Ford AM, Saito H . Protein expression and constitutive phosphorylation of hematopoietic transcription factors PU.1 and C/EBP beta in acute myeloid leukemia blasts Int J Hematol 2000 71: 153–158

    CAS  PubMed  Google Scholar 

  284. Fisher RC, Olson MC, Pongubala JMR, Perkel JM, Atchison ML, Scott EW, Simon MC . Normal myeloid development requires both the glutamine-rich transactivation domain and the PEST region of transcription factor PU.1, but not the potent acidic transactivation domain Mol Cell Biol 1998 18: 4347–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Fisher RC, Scott EW . Role of PU.1 in hematopoiesis Stem Cells 1998 16: 25–27

    Article  CAS  PubMed  Google Scholar 

  286. Yamada T, Kondoh N, Matsumoto M, Yoshida Y, Maekawa A, Oikawa T . Overexpression of PU.1 induces growth and differentiation inhibition and apoptotic cell death in murine erythroleukemia cells Blood 1997 89: 1383–1393

    CAS  PubMed  Google Scholar 

  287. Scott EW, Fisher R, Olson M, Simon MC, Singh H . PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors Immunity 1997 6: 437–447

    Article  CAS  PubMed  Google Scholar 

  288. Carey JO, Posekany KJ, deVente JE, Pettit GR, Ways DK . Phorbol ester-stimulated phosphorylation of PU.1: association with leukemic cell growth inhibition Blood 1996 87: 4316–4324

    CAS  PubMed  Google Scholar 

  289. Olson ME, Scott EW, Hack A, Su G, Singh H, Simon MC . PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation Immunity 1995 3: 702–714

    Article  Google Scholar 

  290. Pongubala J, Beveren CV, Nagulapalli S, Klemsz M, McKercher S, Maki R, Atchison M . Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation Science 1993 259: 1622–1625

    Article  CAS  PubMed  Google Scholar 

  291. Carroll AJ, Crist WM, Parmley RT, Roper M, Cooper MD, Finley WM . Pre-B cell leukemia associated with chromosome translocation 1;19 Blood 1984 63: 721–724

    CAS  PubMed  Google Scholar 

  292. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL Cell 1990 60: 547–555

    Article  CAS  PubMed  Google Scholar 

  293. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary MC . Chromosomal translocation t(1;19) results in synthesis of homeobox fusion mRNA that codes for a potential chimeric transcription factor Cell 1990 60: 535–546

    Article  CAS  PubMed  Google Scholar 

  294. Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G . The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells Mol Cell Biol 1999 19: 6355–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Kamps MP, Baltimore D . E2A-Pbx1, the t(1;19) translocation protein of human pre-B cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice Mol Cell Biol 1993 13: 351–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Dedera DA, Walker EK, LeBrun DP, Sen-Majumbar A, Stevens ME, Barsh GS, Cleary ML . Chimeric homeobox gene E2A-Pbx1 includes proliferation, apoptosis, and malignant lymphomas in transgenic mice Cell 1993 74: 833–843

    Article  CAS  PubMed  Google Scholar 

  297. Monica K, Galili N, Nourse J, Saltman S, Cleary ML . PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1 Mol Cell Biol 1991 11: 6149–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Calvo K, Knoepfler P, McGrath S, Kamps M . An inhibitory switch depressed by Pbx, Hox, and Meis/Prep1 partners regulates DNA-binding by Pbx1 and E2a-Pbx1 and is dispensable for myeloid immortalization by E2a-Pbx1 Oncogene 1999 18: 8033–8043

    Article  CAS  PubMed  Google Scholar 

  299. Azpiazu N, Morata G . Functional and regulatory interactions between Hox and extradenticle genes Genes Dev 1998 12: 261–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Chan SK, Jaffe L, Capovilla M, Botas J, Mann RS . The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein Cell 1994 78: 603–615

    Article  CAS  PubMed  Google Scholar 

  301. Rocco GD, Mavilio F, Zappavigna V . Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex EMBO J 1997 16: 3644–3654

    Article  PubMed  PubMed Central  Google Scholar 

  302. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of Hox homeobox genes in normal and leukemic hematopoiesis Stem Cells 1996 14: 281–290

    Article  CAS  PubMed  Google Scholar 

  303. Knoepfler PS, Kamps MP . The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1 Mol Cell Biol 1995 15: 5811–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Berthelsen J, Zappavigna V, Ferreti E, Mavillo F, Blasi F . The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperativity EMBO J 1998 17: 1434–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Chang CP, Shen WF, Rozenfield S, Lawrence HJ, Largman C, Cleary ML . Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins Genes Dev 1995 9: 663–674

    Article  CAS  PubMed  Google Scholar 

  306. Neuteboom S, Peltenburg L, Dijk Mv, Murre C . The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins Proc Natl Acad Sci USA 1995 92: 9166–9170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Kamps M, Look T, Baltimore D . The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials Genes Dev 1991 5: 358–369

    Article  CAS  PubMed  Google Scholar 

  308. Lu Q, Wright DD, Kamps MP . Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation Mol Cell Biol 1994 14: 3938–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C . A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1 Development 1997 124: 3221–3232

    CAS  PubMed  Google Scholar 

  310. Sauvageau G, Thorsteindottir U, Hough MR, Hugo P, Lawrence HJ, Largman C, Humphries RK . Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation Immunity 1997 6: 13–22

    Article  CAS  PubMed  Google Scholar 

  311. Kroon EJ, Krosl J, Thorsteindottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b EMBO J 1998 13: 3714–3725

    Article  Google Scholar 

  312. Rubnitz JE, Pui C . Molecular diagnostics in the treatment of leukemia Opin Hematol 1999 6: 229–235

    Article  CAS  Google Scholar 

  313. Golub T, Barker GF, Bohlander S, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG . Fusion of the TEL gene on 12p13 to the AML1 gene on 12q22 in acute lymphoblastic leukemia Proc Natl Acad Sci USA 1995 92: 4917–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR, Hiebert SW . Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein Mol Cell Biol 1999 19: 6566–6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A, Downing JR, Grosveld G, Roussell MF, Gilliland DG, Lenny N, Meyers S . The t(12;21) translocation converts AML1-B from an activator to a repressor of transcription Mol Cell Biol 1996 16: 1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Raynaud S, Cave H, Baens M, Bastard C, Cacheux V, Grosgeorge J, Guidal-Giroux C, Guo C, Vilmer E, Marynen P, Grandchamp B . The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia Blood 1996 87: 2891–2899

    CAS  PubMed  Google Scholar 

  317. Kim D, Moldwin RL, Vignon C, Bohlander SK, Suto Y, Giordano L, Gupta R, Fears S, Nucifora G, Rowley JD, Smith SD . TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines Blood 1996 88: 785–794

    CAS  PubMed  Google Scholar 

  318. Warrell RP, He LZ, Richon V, Calleja E, Pandolfi PP . Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase J Natl Cancer Inst 1998 90: 1621–1625

    Article  CAS  PubMed  Google Scholar 

  319. Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, Tanimoto M, Murate T, Kawashima K, Saito H, Naoe T . Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy Leukemia 1999 13: 1316–1324

    Article  CAS  PubMed  Google Scholar 

  320. Takahashi Y, Horibe K, Kiyoi H, Miyashita Y, Fukuda M, Mori H, Nozaki C, Hasegawa S, Kawabe T, Kato K, Kojima S, Matuyama T, Naoe T . Prognostic significance of TEL/AML1 fusion transcript in childhood B-precursor acute lymphoblastic leukemia J Pediatr Hematol Oncol 1998 20: 190–195

    Article  CAS  PubMed  Google Scholar 

  321. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E, Hoelzer D . High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome Blood 1997 90: 1217–1225

    CAS  PubMed  Google Scholar 

  322. Brieger J, Weidmann E, Fenchel K, Mitrou PS, Hoelzer D, Bergmann L . The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells Leukemia 1994 8: 2138–2143

    CAS  PubMed  Google Scholar 

  323. Menssen HD, Renkl HJ, Maurer J, Notter M, Schwartz S, Reinhardt R, Thiel E . Presence of the Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias Leukemia 1995 9: 1060–1067

    CAS  PubMed  Google Scholar 

  324. King-Underwood L, Renshaw J, Pritchard-Jones K . Mutations in the Wilms’ tumor gene WT1 in leukemias Blood 1996 87: 2171–2179

    CAS  PubMed  Google Scholar 

  325. Smit WM, Rijnbeek M, Bergen CAv, Fibbe WE, Willemze R, Falkenburg JH . T cells recognizing leukemic CD34+ progenitor cells mediate the antileukemic effect of donor lymphocyte infusions for relapsed chronic myeloid leukemia after allogeneic stem cell transplantation Proc Natl Acad Sci USA 1998 95: 10152–10157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Patricia Mora-Garcia and Jorge Vargas for their suggestions and assistance in editing. This work was supported by National Institute of Health Grant CA68221-03 and American Cancer Society Grant RPG 99-081-01-LBC. KMS is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crans, H., Sakamoto, K. Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia 15, 313–331 (2001). https://doi.org/10.1038/sj.leu.2402033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402033

Keywords

This article is cited by

Search

Quick links