Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Review

The most unkindest cut of all: on the multiple roles of mammalian caspases*

Abstract

The caspases, first discovered almost a decade ago, are intracellular cysteine proteases which have been shown to play an esssential role in the initiation and execution phases of apoptotic cell death. Numerous strategies for the activation and inhibition of these ‘killer’ proteases have evolved, including the regulation of caspase expression and function at the transcriptional and post-translational level, as well as the expression of viral and cellular inhibitors of caspases. Emerging evidence in recent years has also implicated the caspases in various, non-apoptotic aspects of cellular physiology, such as cytokine processing during inflammation, differentiation of progenitor cells during erythropoiesis and lens fiber development, and proliferation of T lymphocytes, thus attesting to the pleiotropic functions of these proteases. The present review aims to discuss the multiple roles of the mammalian caspases with particular emphasis on their activation and regulation in cells of leukemic origin and the attendant possibilities of therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wyllie AH, Kerr JFR, Currie AR . Cell death: the significance of apoptosis Int Rev Cytol 1980 68: 251–306

    Article  CAS  PubMed  Google Scholar 

  2. Fadeel B, Orrenius S, Zhivotovsky B . Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 1999 266: 699–717

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA . The hallmarks of cancer Cell 2000 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  4. Featherstone C . Andrew Wyllie: from left field to center stage Lancet 1998 351: 192

    Article  Google Scholar 

  5. Nicholson DW . Caspase structure, proteolytic substrates, and function during apoptotic cell death Cell Death Differ 1999 6: 1028–1042

    Article  CAS  PubMed  Google Scholar 

  6. Song Z, Steller H . Death by design: mechanism and control of apoptosis Trends Genet 1999 15: M49-M52

    Article  Google Scholar 

  7. Salvesen GS, Dixit VM . Caspase activation: the induced-proximity model Proc Natl Acad Sci USA 1999 96: 10964–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X . Biochemical pathways of caspase activation during apoptosis Annu Rev Cell Dev Biol 1999 15: 269–290

    Article  CAS  PubMed  Google Scholar 

  9. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G . Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446

    Article  CAS  PubMed  Google Scholar 

  10. Jänicke RU, Ng P, Sprengart ML, Porter AG . Caspase-3 is required for cleavage of α-fodrin but dispensible for cleavage of other death substrates in apoptosis J Biol Chem 1998 273: 15540–15545

    Article  PubMed  Google Scholar 

  11. Earnshaw WC . A cellular poison cupboard Nature 1999 397: 387–389

    Article  CAS  PubMed  Google Scholar 

  12. Kitanaka C, Kuchino Y . Caspase-independent programmed cell death with necrotic morphology Cell Death Differ 1999 6: 508–515

    Article  CAS  PubMed  Google Scholar 

  13. Xiang JL, Chao DT, Korsmeyer SJ . BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases Proc Natl Acad Sci USA 1996 93: 14559–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vercammen D, Brouckaert G, Denecker G, Van de Graen M, Declerq W, Fiers W, Vandenabeele P . Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways J Exp Med 1998 188: 919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P . Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis J Exp Med 1997 185: 1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eguchi Y, Shimizu S, Tsujimoto Y . Intracellular ATP levels determine cell death fate by apoptosis or necrosis Cancer Res 1997 57: 1835–1840

    CAS  PubMed  Google Scholar 

  17. Déas O, Dumont C, McFarlane M, Rouleau M, Hebib C, Harper F, Hirsch F, Charpenter B, Cohen GM, Senik A . Caspase-independent cell death induced by anti-CD2 or staurosporine in activated human peripheral T lymphocytes J Immunol 1998 161: 3375–3383

    PubMed  Google Scholar 

  18. Mateo V, Lagneaux L, Bron D, Biron G, Armant M, Delespesse G, Sarfati M . CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia Nature Med 1999 5: 1277–1284

    Article  CAS  PubMed  Google Scholar 

  19. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S . Apoptosis: cell death defined by caspase activation Cell Death Differ 1999 6: 495–496

    Article  CAS  PubMed  Google Scholar 

  20. Zhivotovsky B, Burgess DH, Vanags DM, Orrenius S . Involvement of cellular proteolytic machinery in apoptosis Biochem Biophys Res Commun 1997 230: 481–488

    Article  CAS  PubMed  Google Scholar 

  21. McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK . Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpainsubstrates Biochem Biophys Res Commun 1999 263: 94–99

    Article  CAS  PubMed  Google Scholar 

  22. Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR . Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation Blood 1999 94: 1683–1692

    CAS  PubMed  Google Scholar 

  23. Ruiz-Vela A, de Buitrago GG, Martinez-A C . Implication of calpain in caspase activation during B cell clonal deletion EMBO J 1999 18: 4988–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chua BT, Guo K, Li P . Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases J Biol Chem 2000 275: 5131–5135

    Article  CAS  PubMed  Google Scholar 

  25. Wood DE, Newcomb EW . Caspase-dependent activation of calpain during drug-induced apoptosis J Biol Chem 1999 274: 8309–8315

    Article  CAS  PubMed  Google Scholar 

  26. Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H . Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis Arch Biochem Biophys 1998 356: 187–196

    Article  CAS  PubMed  Google Scholar 

  27. Pörn-Ares MI, Samali A, Orrenius S . Cleavage of the calpain inhibitor, calpastatin, during apoptosis Cell Death Differ 1998 5: 1028–1033

    Article  PubMed  Google Scholar 

  28. Wright SC, Schellenberger U, Wang H, Kinder DH, Talhouk JW, Larrick JW . Activation of CPP32-like proteases is not sufficient to trigger apoptosis: inhibition of apoptosis by agents that suppress activation of AP24, but not CPP32-like activity J Exp Med 1997 186: 1107–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A . Cathepsin D protease mediates programmed cell death by interferon-gamma, Fas/APO-1 and TNF-alpha EMBO J 1996 15: 3861–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Q, Salvesen GS . Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity Biochem J 1997 324: 361–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vancompernolle K, VanHerreweghe F, Pynaert G, Van de Graen M, De Vos K, Totty N, Sterling A, Fries W, Vandenabeele P, Grooten J . Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity FEBS Lett 1998 438: 150–158

    Article  CAS  PubMed  Google Scholar 

  32. Kokileva L . Disassembly of genome of higher eukaryotes: pulse-field gel electrophoretic study of initial stages of chromatin and DNA degradation in rat liver and thymus nuclei by VM-26 and selected proteases Comp Biochem Physiol B-Biochem Mol Biol 1998 121: 145–151

    Article  CAS  PubMed  Google Scholar 

  33. McConkey DJ . Calcium-dependent, interleukin-1β-converting enzyme inhibitor-insensitive degradation of lamin B1 and DNA fragmentation in isolated thymocyte nuclei J Biol Chem 1996 271: 22398–22406

    Article  CAS  PubMed  Google Scholar 

  34. Zhivotovsky B, Gahm A, Orrenius S . Two different proteases are involved in the proteolysis of lamin during apoptosis Biochem Biophys Res Commun 1996 232: 96–101

    Google Scholar 

  35. Chandra J, Gilbreath J, Freireich EJ, Kliche KO, Andreef M, Keating M . McConkey DJ. Protease activation is required for glucocorticoid-induced apoptosis in chronic lymphocytic leukemic lymphocytes Blood 1997 90: 3673–3681

    CAS  PubMed  Google Scholar 

  36. Chandra J, Niemer I, Gilbreath J, Kliche KO, Andreeff M, Freireich EJ, Keating M, McConkey DJ . Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes Blood 1998 92: 4220–4229

    CAS  PubMed  Google Scholar 

  37. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano OC, Raju SM, Rolando AM, Salley JP, Yamin T-T, Lee TD, Shively JE, MacCross M, Mumford RA, Schmidt JA, Tocci MJ . A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes Nature 1992 356: 768–774

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, Towne E, Tracey D, Wardwell S, Wei F-Y, Wong W, Kamen R, Seshadri T . Mice deficient in IL-1β converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock Cell 1995 80: 401–411

    Article  CAS  PubMed  Google Scholar 

  39. Kiuda K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA . Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme Science 1995 267: 2000–2003

    Article  Google Scholar 

  40. Schlegel J, Peters I, Orrenius S, Miller DK, Thornberry NA, Yamin T-T, Nicholson DW . CPP32/apopain is a key interleukin-1β converting enzyme-like protease involved in Fas-mediated killing J Biol Chem 1996 271: 1841–1844

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Miura M, Jung Y-K, Zhu H, Yuan J . Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE Cell 1998 92: 501–509

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Center DM, Wu DMH, Cruikshank WW, Yuan J, Andrews DW, Kornfeld H . Processing and activation of pro-interleukin-16 by caspase-3 J Biol Chem 1998 273: 1144–1149

    Article  CAS  PubMed  Google Scholar 

  43. Newton K, Harris AW, Bath ML, Smith KGC, Strasser A . A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes EMBO J 1998 17: 706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang JK, Cado D, Chen A, Kabra NH, Winoto A . Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1 Nature 1998 392: 296–300

    Article  CAS  PubMed  Google Scholar 

  45. Newton K, Harris AW, Strasser A . FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor EMBO J 2000 19: 931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aggarwal BB, Singh S, LaPushin R, Totpal K . Fas antigen signals proliferation of normal human diploid fibroblasts and its mechanism is different from tumor necrosis factor receptor FEBS Lett 1995 364: 5–8

    Article  CAS  PubMed  Google Scholar 

  47. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH . Fas transduces activation signals in normal human T lymphocytes J Exp Med 1993 178: 2231–2235

    Article  CAS  PubMed  Google Scholar 

  48. Mapara MY, Bargou R, Zudck C, Dohner H, Ustaouglu F, Jonker RR, Krammer PH, Dorken B . APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression Eur J Immunol 1993 23: 702–708

    Article  CAS  PubMed  Google Scholar 

  49. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F . Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids Proc Natl Acad Sci USA 1999 96: 13795–13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miossec C, Dutilleul V, Fassy F, Diu-Hercend A . Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation J Biol Chem 1997 272: 13459–13462

    Article  CAS  PubMed  Google Scholar 

  51. Wilhelm S, Wagner H, Häcker G . Activation of caspase-3-like enzymes in non-apoptotic T cells Eur J Immunol 1998 28: 891–900

    Article  CAS  PubMed  Google Scholar 

  52. Zapata JM, Takahashi R, Salvesen GS, Reed JC . Granzyme release and caspase activation in activated human T-lymphocytes J Biol Chem 1998 273: 6916–6920

    Article  CAS  PubMed  Google Scholar 

  53. Alam A, Cohen LY, Aouad S, Sékaly R-P . Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells J Exp Med 1999 190: 1879–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kennedy NJ, Kataoka T, Tschopp J, Budd RC . Caspase activation is required for T cell proliferation J Exp Med 1999 190: 1891–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV . Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis J Immunol 1999 162: 5205–5211

    CAS  PubMed  Google Scholar 

  56. Sato T, Irie S, Kitada S, Reed JC . FAP-1: a protein tyrosine phosphatase that associates with Fas Science 1995 268: 411–415

    Article  CAS  PubMed  Google Scholar 

  57. Zhou YW, Komada Y, Inaba H, Azuma E, Sakurai M . Down-regulation of Fas-associated phosphatase-1 (FAP-1) in interleukin-2-activated T cells Cell Immunol 1998 186: 103–110

    Article  CAS  PubMed  Google Scholar 

  58. Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M . Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases EMBO J 1998 17: 6124–6134

    Article  PubMed  PubMed Central  Google Scholar 

  59. DeMaria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F, Srinivasula SM, Alnemri ES, Testa U, Peschle C . Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1 Nature 1999 401: 489–493

    Article  CAS  Google Scholar 

  60. Ishizaki Y, Jacobson MD, Raff MC . A role for caspases in lens fiber differentiation J Cell Biol 1998 140: 153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watanabe Y, Akaike T . Possible involvement of caspase-like family in maintenance of cytoskeleton integrity J Cell Physiol 1999 179: 45–51

    Article  CAS  PubMed  Google Scholar 

  62. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR . The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme Cell 1993 75: 641–652

    Article  CAS  PubMed  Google Scholar 

  63. Thornberry NA, Lazebnik Y . Caspases: enemies within Science 1998 281: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  64. Kuida K, Zheng TS, Na SQ, Kuan CY, Yang D, Karasuyama H, Su M, Rakic P, Flavell RA . Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice Nature 1996 384: 368–372

    Article  CAS  PubMed  Google Scholar 

  65. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kägi D, Hakem A, McCurrach M, Khoo W, Kaufmann SA, Senaldi G, Howard T, Lowe SW, Mak TW . Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes Genes Dev 1998 12: 806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW . Differential requirement for caspase 9 in apoptotic pathways in vivo Cell 1998 94: 339–352

    Article  CAS  PubMed  Google Scholar 

  67. Kuida K, Haydar TF, Kuan C-Y, Gu Y, Taya C, Karasuyama H, Su MS-S, Rakic P, Flavell RA . Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 Cell 1998 94: 325–337

    Article  CAS  PubMed  Google Scholar 

  68. Varfolomeev EE, Schichmann M, Luira V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D . Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo-1, and DR3 and is lethal prenatally Immunity 1998 9: 267–276

    Article  CAS  PubMed  Google Scholar 

  69. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P . Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development Cell 1998 94: 727–737

    Article  CAS  PubMed  Google Scholar 

  70. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW . Apaf1 is required for mitochondrial pathways of apoptosis and brain development Cell 1998 94: 739–750

    Article  CAS  PubMed  Google Scholar 

  71. Stroh C, Schulze-Osthoff K . Death by a thousand cuts: an ever increasing list of caspase substrates Cell Death Differ 1998 5: 997–1000

    Article  CAS  PubMed  Google Scholar 

  72. Sanghavi DM, Thelen M, Thornberry NA, Casciola-Rosen L, Rosen A . Caspase-mediated proteolysis during apoptosis: insights from apoptotic neutrophils FEBS Lett 1998 422: 179–184

    Article  CAS  PubMed  Google Scholar 

  73. Wilhelm S, Hacker G . Proteolytic specificity of caspases is required to signal the appearance of apoptotic morphology Eur J Cell Biol 1999 78: 127–133

    Article  CAS  PubMed  Google Scholar 

  74. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT . Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis Science 1997 278: 294–298

    Article  CAS  PubMed  Google Scholar 

  75. Sahara S, Aota M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y . Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation Nature 1999 401: 168–173

    Article  CAS  PubMed  Google Scholar 

  76. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL, Flinn IW, Diehl LF, Sausville E, Grever MR . Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of Bcl-2 modulation or dependence on functional p53 Blood 1998 92: 3804–3816

    CAS  PubMed  Google Scholar 

  77. Bantel H, Engels IH, Voelter W, Sculze-Osthoff K, Wesselborg S . Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis Cancer Res 1999 59: 2083–2090

    CAS  PubMed  Google Scholar 

  78. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K . Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction Blood 1999 93: 3053–3063

    CAS  PubMed  Google Scholar 

  79. Friesen C . Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug-induced apoptosis in leukemia cells Nature Med 1996 2: 574–577

    Article  CAS  PubMed  Google Scholar 

  80. Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR . Drug-induced apoptosis in hepatoma cells is mediated by by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53 J Clin Invest 1997 99: 403–413

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM . The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells Cancer Res 1997 57: 3823–3829

    CAS  PubMed  Google Scholar 

  82. Nomura Y, Inanami O, Takahashi K, Matsuda A, Kuwabara M . 2-Chloro-2′-deoxyadenosine induces apoptosis through the Fas/Fas ligand pathway in human leukemia cell line MOLT-4 Leukemia 2000 14: 299–306

    Article  CAS  PubMed  Google Scholar 

  83. Landowski TH, Gleason-Guzman MC, Dalton WS . Selection for drug resistance results in resistance to Fas-mediated apoptosis Blood 1997 89: 1854–1861

    CAS  PubMed  Google Scholar 

  84. Los M, Herr I, Friesen C, Fulda S, Schulze-Osthoff K, Debatin K-M . Cross-resistance of CD95- and drug-induced apoptosis as a consequence of deficient activation of caspases (ICE/Ced-3 proteases) Blood 1997 90: 3118–3129

    CAS  PubMed  Google Scholar 

  85. Eischen CM, Kottke TJ, Martins LM, Basi GS, Tung JS, Earnshaw WC, Leibson PJ, Kaufmann SH . Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions Blood 1997 90: 935–943

    CAS  PubMed  Google Scholar 

  86. Gamen S, Anel A, Lasierra P, Alava MA, Martinez-Lorenzo MJ, Pineiro A, Naval J . Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way FEBS Lett 1997 417: 360–364

    Article  CAS  PubMed  Google Scholar 

  87. Tolomeo M, Dusonchet L, Meli M, Grimaudo S, D'Alessandro N, Papoff G, Ruberti G, Rausa L . The CD95/CD95 ligand system is not the major effector in anticancer drug-mediated apoptosis Cell Death Differ 1998 5: 735–742

    Article  CAS  PubMed  Google Scholar 

  88. Landowski TH, Shain KH, Oshiro MM, Buyuksal I, Painter JS, Dalton WS . Myeloma cells selected for resistance to CD95-mediated apoptosos are not cross-resistant to cytotoxic drugs: evidence for independent mechanisms of caspase activation Blood 1999 94: 2265–2274

    Google Scholar 

  89. Fulda S, Strauss G, Meyer E, Debatin KM . Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic cells Blood 2000 95: 301–308

    CAS  PubMed  Google Scholar 

  90. Los M, Wesselborg S, Shulze-Osthoff K . The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice Immunity 1999 10: 629–639

    Article  CAS  PubMed  Google Scholar 

  91. Belka C, Marini P, Leppe-Wienhues A, Budach W, Jekle A, Los M, Lang F, Shulze-Osthoff K, Gulbins E, Bamberg M . The tyrosine kinase Lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation Oncogene 1999 18: 4983–4992

    Article  CAS  PubMed  Google Scholar 

  92. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME . Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery Cell 1997 91: 231–241

    Article  CAS  PubMed  Google Scholar 

  93. Brunet A, Bonni A, Zigmonod MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blensig J, Greenberg ME . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 1999 96: 857–868

    Article  CAS  PubMed  Google Scholar 

  94. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez J, Chen HH, Lin SC, Lazebnik Y . Caspase phosphorylation, cell death, and species variability Science 2000 287: 1363a

    Article  Google Scholar 

  96. Reed JC, Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke T, Stanbridge E . Caspase phosphorylation, cell death, and species variability. Response Science 2000 287: 1363a

    Article  Google Scholar 

  97. Yang X, Khosravi-Far R, Chang HY, Baltimore D . Daxx, a novel Fas-binding protein that activates JNK and apoptosis Cell 1997 89: 1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Torii S, Egan DA, Evans RA, Reed JC . Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogene domains (PODs) EMBO J 1999 18: 6037–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP . Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis J Exp Med 2000 191: 631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sells MA, Chernoff J . Emerging from the Pak: the p21-activated protein kinase family Trends Cell Biol 1997 7: 162–167

    Article  CAS  PubMed  Google Scholar 

  101. Schürmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM . p21-Activated kinase 1 phosphorylates the death agonist Bad and protects cells from apoptosis Mol Cell Biol 2000 20: 453–461

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rudel T, Bokoch GM . Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2 Science 1997 276: 1571–1574

    Article  CAS  PubMed  Google Scholar 

  103. Beg AA, Baltimore D . An essential role for NF-kB in preventing TNFα-induced cell death Science 1996 274: 782–784

    Article  CAS  PubMed  Google Scholar 

  104. Irmler M, Steiner V, Ruegg C, Wajant H, Tschopp J . Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis FEBS Lett 2000 468: 129–133

    Article  CAS  PubMed  Google Scholar 

  105. Martinon F, Holler F, Richard C, Tschopp J . Activation of a pro-apoptotic amplification loop through inhibition of NF-kB-dependent survival signals by caspase-mediated inactivation of RIP FEBS Lett 2000 468: 134–136

    Article  CAS  PubMed  Google Scholar 

  106. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW . Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kB loop Nature Cell Biol 1999 1: 227–233

    Article  CAS  PubMed  Google Scholar 

  107. Hofmann TG, Hehner SP, Dröge W, Schmiz ML . Caspase-dependent cleavage and inactivation of the Vav1 proto-oncogene product during apoptosis prevents IL-2 transcription Oncogene 2000 19: 1153–1163

    Article  CAS  PubMed  Google Scholar 

  108. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B-cells Nature 1988 335: 440–442

    Article  CAS  PubMed  Google Scholar 

  109. Yang J, Xuesong L, Bhalla K, Kim CN, Ibrado, AM, Cai J, Peng T-I, Jones DP, Wang X . Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 1997 275: 1129–1132

    Article  CAS  PubMed  Google Scholar 

  110. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science 1997 275: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  111. Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C . Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c Nature 1998 391: 496–499

    Article  PubMed  Google Scholar 

  112. Zhivotovsky B, Orrenius S, Brustugun OT, Døskeland SO . Injected cytochrome c induces apoptosis Nature 1998 391: 449–450

    Article  CAS  PubMed  Google Scholar 

  113. Nomura M, Shimizu S, Ito T, Narita M, Matsuda H, Tsujimoto Y . Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2 Cancer Res 1999 59: 5542–5548

    CAS  PubMed  Google Scholar 

  114. Cheng EH-Y, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of bcl-2 to a bax-like death effector by caspases Science 1997 278: 1966–1968

    Article  CAS  PubMed  Google Scholar 

  115. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM . Modulation of cell death by Bcl-XL through caspase interaction Proc Natl Acad Sci USA 1998 95: 544–549

    Article  Google Scholar 

  116. Fadeel B, Hassan Z, Hellström-Lindberg E, Henter J-I, Orrenius S, Zhivotovsky B . Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells Leukemia 1999 13: 719–728

    Article  CAS  PubMed  Google Scholar 

  117. Kirsch DG, Doseff A, Chau BN, Lim D-S, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM . Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c J Biol Chem 1999 274: 21155–21161

    Article  CAS  PubMed  Google Scholar 

  118. Zhang XM, Lin H, Chen C, Chen BD . Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-07e leukaemic cells Biochem J 1999 340: 127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fadeel B, Zhivotovsky B, Orrenius S . All along the watchtower: on the regulation of apoptosis regulators FASEB J 1999 13: 1253–1260

    Article  Google Scholar 

  120. Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S, Yamada M, Lieberman HB, Wang H-G . Human homologue of S. pombe Rad9 interacts with Bcl-2/Bcl-xL and promotes apoptosis Nature Cell Biol 2000 2: 1–6

    Article  CAS  PubMed  Google Scholar 

  121. Droin N, Dubrez L, Eymin B, Renvoize C, Breard J, Dimanche-Boitrel MT, Solary E . Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis Oncogene 1998 16: 2885–2894

    Article  CAS  PubMed  Google Scholar 

  122. Izban KF, Wrone-Smith T, His ED, Schnitzer B, Quevedo ME, Alkan S . Characterization of the interleukin-1β-converting enzyme/Ced-3-family protease, caspase-3/CPP32, in Hodgkin's disease. Lack of caspase-3 expression in nodular lymphocyte predominance Hodgkin's disease Am J Pathol 1999 154: 1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krajewski S, Gascoyne RD, Zapata JM, Kraewska M, Kitada S, Chhanabhai M, Horsman D, Berean K, Piro LD, Fugier-Vivier I, Liu YJ, Wang HG, Reed JC . Immunolocalization of the ICE/Ced-3-family protease, CPP32 (Caspase-3), in non-Hodgkin's lymphomas, chronic lymphocytic leukemias, and reactive lymph nodes Blood 1997 89: 3817–3825

    CAS  PubMed  Google Scholar 

  124. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, Wang HG, Zhang X, Bullrich F, Croce CM, Rai K, Hines J, Reed JC . Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlation with in vitro and in vivo chemoresponses Blood 1998 91: 3379–3389

    CAS  PubMed  Google Scholar 

  125. Hofmann K, Bucher P, Tschopp J . The CARD domain: a new signalling motif Trends Biochem Sci 1997 22: 155–156

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L, Rakestraw KM, Naeve CW, Beckmann G, Weisenburger DD, Sanger WG, Nowotny H, Vesely M, Callet-Bauchu E, Salles G, Dixit VM, Rosenthal A, Schlegelberger B, Morris SW . Inactivating mutations and overexpression of BCl-10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32) Nat Genet 1999 22: 63–68

    Article  CAS  PubMed  Google Scholar 

  127. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, Pan L, Crook T, Hamoudi R, Isaacson PG, Dyer MJ . Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types Cell 1999 96: 35–45

    Article  CAS  PubMed  Google Scholar 

  128. Guiet C, Vito P . Caspase recruitment domain (CARD)-dependent cytoplasmic filaments mediate bcl10-induced NF-kB activation J Cell Biol 2000 148: 1131–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E, Katsuyama T, Higuchi T, Sagara J . ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells J Biol Chem 1999 274: 33835–33838

    Article  Google Scholar 

  130. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP . Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide New Engl J Med 1998 339: 1341–1348

    Article  CAS  PubMed  Google Scholar 

  131. Jing YK, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S . Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway Blood 1999 94: 2102–2111

    CAS  PubMed  Google Scholar 

  132. Nobel CS, Burgess DH, Zhivotovsky B, Burkitt MJ, Orrenius S, Slater AF . Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme Chem Res Toxicol 1997 10: 636–643

    Article  CAS  PubMed  Google Scholar 

  133. Hampton MB, Orrenius S . Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis FEBS Lett 1997 414: 552–556

    Article  CAS  PubMed  Google Scholar 

  134. Stoetzer OJ, Pogrebniak A, Scholz M, Pelka-Fleischer R, Gullis E, Darsow M, Nussler V, Wilmanns W . Drug-induced apoptosis in chronic lymphocytic leukemia Leukemia 1999 13: 1873–1880

    Article  CAS  PubMed  Google Scholar 

  135. Faderl S, Thall PF, Kantarjian HM, Talpaz M, Harris D, Van Q, Beran M, Kornblau SM, Pierce S, Estrov Z . Caspase 2 and caspase 3 as predictors of complete remission and survival in adults with acute lymphoblastic leukemia Clin Cancer Res 1999 5: 4041–4047

    CAS  PubMed  Google Scholar 

  136. Yamabe K, Shimizu S, Ito T, Yoshioka Y, Nomura M, Narita M, Saito I, Kanegae Y, Matsuda H . Cancer gene therapy using a pro-apoptotic gene, caspase-3 Gene Therapy 1999 6: 1952–1959

    Article  CAS  PubMed  Google Scholar 

  137. Jiang Z-H, Zhang W-J, Rao Y, Wu JY . Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors Proc Natl Acad Sci USA 1998 95: 9155–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Seol D-W, Billiar TR . A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis J Biol Chem 1999 274: 2072–2076

    Article  CAS  PubMed  Google Scholar 

  139. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A . The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling J Cell Biol 1998 140: 1485–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Samali A, Zhivotovsky B, Jones DP, Orrenius S . Detection of pro-caspase-3 in cytosol and mitochondria of various tissues FEBS Lett 1998 431: 167–169

    Article  CAS  PubMed  Google Scholar 

  141. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prévost M-C, Alzari PM, Kroemer G . Mitochondrial release of caspase-2 and -9 during the apoptotic process J Exp Med 1999 189: 381–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhivotovsky B, Samali A, Gahm A, Orrenius S . Caspases: their intracellular localization and translocation during apoptosis Cell Death Differ 1999 6: 644–651

    Article  CAS  PubMed  Google Scholar 

  143. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J . Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β Nature 2000 403: 98–103

    Article  CAS  PubMed  Google Scholar 

  144. Kawabata Y, Hirokawa M, Kitabayashi A, Horiuchi T, Kuroki J, Miura AB . Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: a novel mechanism of nuclear apoptosis resistance Blood 1999 94: 3523–3530

    CAS  PubMed  Google Scholar 

  145. Joseph B, Ekedahl J, Lewensohn R, Marchetti P, Formstecher P, Zhivotovsky B . Defective caspase-3 relocalization in non-small cell lung carcinoma: Mechanism for a nuclear apoptosis resistance Cancer Res 2000 (submitted)

  146. Hirpara JL, Seyed MA, Loh KW, Dong H, Kini RM, Pervaiz S . Induction of mitochondrial permeability transition and cytochrome c release in the absence of caspase activation is insufficient for effective apoptosis in human leukemia cells Blood 2000 95: 1773–1780

    CAS  PubMed  Google Scholar 

  147. Guillouf C, Vit JP, Rosselli F . Loss of the Fanconi anemia group C protein activity results in an inability to activate caspase-3 after ionizing radiation Biochimie 2000 82: 51–58

    Article  CAS  PubMed  Google Scholar 

  148. King D, Pringle JH, Hutchinson M, Cohen GM . Processing/activation of caspases-3 and –7 and –8 but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells Leukemia 1998 12: 1553–1560

    Article  CAS  PubMed  Google Scholar 

  149. Joseph B, Ekedahl J, Sirzen F, Lewensohn R, Zhivotovsky B . Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma Biochem Biophys Res Commun 1999 262: 381–387

    Article  CAS  PubMed  Google Scholar 

  150. Ekert PG, Silke J, Vaux DL . Caspase inhibitors Cell Death Differ 1999 6: 1081–1086

    Article  CAS  PubMed  Google Scholar 

  151. Johnstone RW, Cretney E, Smyth MJ . P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death Blood 1999 93: 1075–1085

    CAS  PubMed  Google Scholar 

  152. French LE, Tschopp J . Inhibition of death receptor signaling by FLICE-inhibitory protein as a mechanism for immune escape of tumors J Exp Med 1999 190: 891–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A . The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors J Exp Med 1999 190: 1025–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Medema JP, de Jong J, van Hall T, Melief CJM, Offringa R . Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein J Exp Med 1999 190: 1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S, Kitada S, Pawlowski K, Godzik A, Reed JC . BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins Proc Natl Acad Sci USA 2000 97: 2597–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Deveraux QL, Reed JC . IAP family proteins – suppressors of apoptosis Genes Dev 1999 13: 239–252

    Article  CAS  PubMed  Google Scholar 

  157. Deveraux QL, Roy N, Stennicke HR, VanArsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC . IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases EMBO J 1998 17: 2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases EMBO J 1999 18: 5242–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wagenknecht B, Glaser T, Naumann U, Kugler S, Isenmann S, Bahr M, Korneluk R, Liston P, Weller M . Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma Cell Death Differ 1999 6: 370–376

    Article  CAS  PubMed  Google Scholar 

  160. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma Nature Med 1997 3: 917–921

    Article  CAS  PubMed  Google Scholar 

  161. Li F, Ambrosini G, Chu EY, Piescia J, Tognin S, Marchisio PC, Altieri DC . Control of apoptosis and mitotic spindle checkpoint by survivin Nature 1998 396: 580–584

    Article  CAS  PubMed  Google Scholar 

  162. Li F, Ackermann EJ, Bennett CF, Rothermel A-L, Plescia J, Tognin S, Villa A, Marchisio PC, Altieri DC . Pleiotropic cell-division defects and apoptosis induced by interference with survivin function Nature Cell Biol 1999 1: 461–466

    Article  CAS  PubMed  Google Scholar 

  163. Li F, Flanary PL, Altieri DC, Dohlman HG . Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast J Biol Chem 2000 275: 6707–6711

    Article  CAS  PubMed  Google Scholar 

  164. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD . Survivin-ΔEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitors survivin with different properties Cancer Res 1999 59: 6097–6102

    CAS  PubMed  Google Scholar 

  165. Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Ong K, Baens, M, Collen D, Schuh AC . Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions Blood 2000 95: 1435–1442

    CAS  PubMed  Google Scholar 

  166. Sellers WR, Fisher DE . Apoptosis and cancer drug targeting J Clin Invest 1999 104: 1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen Q, Takeyama N, Brady G, Watson AJM, Dive C . Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenicity given appropriate signals to suppress apoptosis Blood 1998 92: 4545–4553

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Swedish Medical Research Foundation (SO, BZ, BF) and the Swedish Cancer Foundation (BZ). BF holds a combined clinical training and research position at the Karolinska Hospital and Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Additional information

*From Julius Caesar (act III, scene 2) by William Shakespeare

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeel, B., Orrenius, S. & Zhivotovsky, B. The most unkindest cut of all: on the multiple roles of mammalian caspases*. Leukemia 14, 1514–1525 (2000). https://doi.org/10.1038/sj.leu.2401871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401871

Keywords

This article is cited by

Search

Quick links