Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors

Abstract

The assembly of signalling molecules into macromolecular complexes (transducisomes) provides specificity, sensitivity and speed in intracellular signalling pathways1,2. Rod photoreceptors in the eye contain an unusual set of glutamic-acid-rich proteins (GARPs) of unknown function3,4,5,6,7. GARPs exist as two soluble forms, GARP1 and GARP2, and as a large cytoplasmic domain (GARP′ part) of the β-subunit of the cyclic GMP-gated channel3,4,5,6,7. Here we identify GARPs as multivalent proteins that interact with the keyplayers of cGMP signalling, phosphodiesterase and guanylate cyclase, and with a retina-specific ATP-binding cassette transporter (ABCR)8,9, through four, short, repetitive sequences. In electron micrographs, GARPs are restricted to the rim region and incisures of discs in close proximity to the guanylate cyclase and ABCR, whereas the phosphodiesterase is randomly distributed. GARP2, the most abundant splice form, associates more strongly with light-activated than with inactive phosphodiesterase, and GARP2 potently inhibits phosphodiesterase activity. Thus, the GARPs organize a dynamic protein complex near the disc rim that may control cGMP turnover and possibly other light-dependent processes. Because there are no similar GARPs in cones, we propose that GARPs may prevent unnecessary cGMP turnover during daylight, when rods are held in saturation by the relatively high light levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of GARPs and localization to rod photoreceptors.
Figure 2: Association of rod outer segment proteins with GARPs.
Figure 3: Inhibition of phosphodiesterase (PDE) by rGARP2.
Figure 4: Immunoelectron microscopic localization of GARPs and PDE in photoreceptor cells.
Figure 5: Hypothetical model of protein interactions.

Similar content being viewed by others

References

  1. Tsunoda, S. et al. Amultivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Zuker, C. S. & Ranganathan, R. The path to specificity. Science 283, 650–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Sugimoto, Y., Yatsunami, K., Tsujimoto, M., Khorana, H. G. & Ichikawa, A. The amino acid sequence of a glutamic acid-rich protein from bovine retina as deduced from the cDNA sequence. Proc. Natl Acad. Sci. USA 88, 3116–3119 (1991).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  4. Körschen, H. G. et al. A240 kDa protein represents the complete β subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 15, 627–636 (1995).

    Article  PubMed  Google Scholar 

  5. Ardell, M. D. et al. cDNA, gene structure, and chromosomal localization of human GAR1 (CNCG3L), a homolog of the third subunit of bovine photoreceptor cGMP-gated channel. Genomics 28, 32–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Colville, C. A. & Molday, R. S. Primary structure and expression of the human β-subunit and related proteins of the rod photoreceptor cGMP-gated channel. J. Biol. Chem. 271, 32968–32974 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Grunwald, M. E., Yu, W.-P., Yu, H.-H. & Yau, K.-W. Identification of a domain on the β-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium–calmodulin. J. Biol. Chem. 273, 9148–9157 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Illing, M., Molday, L. L. & Molday, R. S. The 220-kDa rim protein of retinal rod outer segment is a member of the ABC transporter superfamily. J. Biol. Chem. 272, 10303–10310 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Allikmets, R. et al. Aphotoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet. 15, 236–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Papermaster, D. S., Schneider, B. G., Zorn, M. A. & Kraehenbuhl, J. P. Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J. Cell Biol. 78, 415–425 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Montell, C. TRP trapped in fly signaling web. Curr. Opin. Neurobiol. 8, 389–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Koch, K.-W. & Lambrecht, H.-G. in Signal Transduction in Photoreceptor Cells (eds Hargrave, P. A., Hofmann, K. P. & Kaupp, U. B.) 259–267 (Springer, Berlin, (1992).

    Book  Google Scholar 

  13. Schrem, A., Lange, C., Beyermann, M. & Koch, K.-W. Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors. J.Biol. Chem. 274, 6244–6249 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Heck, M. & Hofmann, K. P. G-protein-effector coupling: A real-time light-scattering assay for transducin-phosphodiesterase interaction. Biochemistry 32, 8220–8227 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X. et al. Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp. Eye Res. 59, 761–768 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, N. J., Molday, L. L., Reid, D., Kaupp, U. B. & Molday, R. S. The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. J. Biol. Chem. 264, 6996–6999 (1989).

    CAS  PubMed  Google Scholar 

  17. Pedler, C. M. & Tilly, R. The fine structure of photoreceptor discs. Vision Res. 7, 829–836 (1967).

    Article  CAS  PubMed  Google Scholar 

  18. Eckmiller, M. S. & Toman, A. Association of kinesin with microtubules in diverse cytoskeletal systems in the outer segments of rods and cones. Acta Anat. 162, 133–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Roof, D. J. & Heuser, J. E. Surfaces of rod photoreceptor disk membranes: Integral membrane components. J. Cell Biol. 95, 487–500 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. He, W., Cowan, C. W. & Wensel, T. G. RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95–102 (1998).

    Article  PubMed  Google Scholar 

  21. Makino, E. R., Handy, J. W., Li, T. & Arshavsky, V. Y. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein β subunit. Proc. Natl Acad. Sci. USA 96, 1947–1952 (1999).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Pugh, E. N. J & Lamb, T. D. Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta 1141, 111–149 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bönigk, W. et al. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron 10, 865–877 (1993).

    Article  PubMed  Google Scholar 

  24. Zoche, M., Bienert, M., Beyermann, M. & Koch, K.-W. Distinct molecular recognition of calmodulin-binding sites in the neuronal and macrophage nitric oxide synthases: A surface plasmon resonance study. Biochemistry 35, 8742–8747 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, Y.-T. & Molday, R. S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361, 76–79 (1993).

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Lambrecht, H.-G. & Koch, K.-W. A26 kd calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J. 10, 793–798 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolfrum, U. Centrin in the photoreceptor cells of mammalian retinae. Cell Motil. Cytoskel. 32, 55–64 (1995).

    Article  CAS  Google Scholar 

  28. Wolfrum, U., Liu, X., Schmitt, A., Udovichenko, I. P. & Williams, D. S. Myosin VIIa as a common component of cilia and microvilli. Cell Motil. Cytoskel. 40, 261–271 (1998).

    Article  CAS  Google Scholar 

  29. Danscher, G. Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71, 81–88 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Beavo, J. Nathans, I. Weyand and D. Weitz for antibodies, A. Eckert forpreparing the manuscript, I. Weyand and R. Seifert for critical reading of the manuscript, and E. Pugh and R. Cote for discussions. This work was supported by grants from the EU (U.B.K.), the Deutsche Forschungsgemeinschaft (M.B., K.P.H., K.-W.K., U.B.K., U.W.) and the FAUN-Stiftung (U.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Benjamin Kaupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körschen, H., Beyermann, M., Müller, F. et al. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 400, 761–766 (1999). https://doi.org/10.1038/23468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23468

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing