Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mechanisms for pressure-induced amorphization of ice Ih

Abstract

There has been considerable interest in the structure of liquid water at low temperatures and high pressure following the discovery of the high-density amorphous (HDA) phase of ice Ih (ref. 1). HDA ice forms at a pressure close to the extrapolated melting curve of ice, leading to the suggestion that it may have structure similar to that of dense water. On annealing, HDA ice transforms into a low-density amorphous (LDA) phase with a distinct phase boundary2,3. Extrapolation of thermodynamic data along the HDA–LDA coexistence line into the liquid region has led to the hypothesis that there might exist a second critical point for water and the speculation that liquid water is mixture of two distinct structures with different densities4,5. Here we critically examine this hypothesis. We use quasi-harmonic lattice-dynamics calculations to show that the amorphization mechanism in ice Ih changes from thermodynamic melting for T > 162 K to mechanical melting at lower temperatures. The vibrational spectra of ice Ih, LDA ice and quenched water also indicate a structure for LDA ice that differs from that of the liquid. These results call into question the validity of there being a thermodynamic connection between the amorphous and liquid phases of water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase behaviour (experimental and theoretical) of ice Ih.
Figure 2: The experimental inelastic incoherent neutron scattering (IINS) function for LDA ice, hyperquenched (hg) water, and ice Ih.

Similar content being viewed by others

References

  1. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting’ ice I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Mishima, O. Reversible first-order transition between the two H2O amorphs at 0.2 GPa and 135 K. J. Chem. Phys. 100, 5910–5912 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Mishima, O. & Stanley, E. H. Decompression-induced melting of ice IV and the liquid–liquid transition in water. Nature 392, 164–168 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1992).

    Article  ADS  Google Scholar 

  6. Shpakov, V. P., Tse, J. S., Belosludov, V. R. & Beloslodov, R. V. Elastic moduli & instability in molecular crystals. J. Phys. Condens. Matter 9, 5853–5865 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Oxford Univ. Press, London, 1954).

    MATH  Google Scholar 

  8. Bruesch, P. Phonons: Theory and Experiments I (Springer, New York, 1982).

    Book  Google Scholar 

  9. Belosludov, R. V., Grochev, E. V., Dyanin, Yu. A. & Belosludov, V. R. in Proc. 2nd Int. Conf. on Natural Gas Hydrate 303–309 (PROGEP, Toulouse, 1996).

    Google Scholar 

  10. Tse, J. S., Shpakov, V. P. & Belosludov, V. R. High-pressure elastic constants of solid krypton from quasi-harmonic lattice-dynamics calculations. Phys. Rev. B 58, 2365–2368 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Handa, Y. P., Tse, J. S., Klug, D. D. & Whalley, E. Pressure-induced phase transitions in clathrate hydrates. J. Chem. Phys. 94, 623–627 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Tse, J. S., Klug, D. D., Ripmeester, J. A., Desgreniers, S. & Lagarec, K. The role of non-deformable units in pressure-induced reversible amorphization of clathrasils. Nature 369, 724–727 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Whalley, E., Klug, D. D. & Handa, Y. P. Entropy of amorphous ice. Nature 342, 782–783 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Tse, J. S. Mechanical instability in ice Ih: A mechanism for pressure-induced amorphization. J. Chem. Phys. 96, 5482–5487 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Bellissent-Funel, M. C. Is there a liquid-liquid phase transition in supercooled water? Europhys. Lett. 42, 161–166 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Floriano, M. A., Whalley, E., Svensson, E. C. & Sears, V. F. Structure of high-density amorphous ice by neutron diffraction. Phys. Rev. Lett. 57, 3062–3064 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Bosio, L., Johari, G. P. & Teixeira, J. X-ray study of high-density amorphous water. Phys. Rev. Lett. 56, 460–463 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Bizid, A., Bosio, L., Defrain, A. & Oumezzine, M. Structure of a high-density amorphous water. I. X-ray diffraction. J. Chem. Phys. 87, 2225–2230 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Bellissent-Funel, M. C., Bosio, L., Hallbrucker, A., Mayer, E. & Sridi-Dorbez, R. X-ray and neutron scattering studies of the structure of hyperquenched glassy water. J. Chem. Phys. 97, 1282–1286 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Okhulkov, A. V., Demianets, Y. N. & Gorbaty, Y. E. X-ray scattering in liquid water at pressures of up to 7.7 kbar: Test of a fluctuation model. J. Chem. Phys. 100, 1578–1588 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Tulk, C. A., Klug, D. D., Branderhorst, R., Sharpe, P. & Ripmeester, J. A. Hydrogen bonding in glassy liquid water from Raman spectroscopic studies. J. Chem. Phys. 109, 8478–8484 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Jorgensen, W. L., Chandrasakhar, J., Madura, R. W., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–936 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Sprik, M., Impey, R. I. & Klein, M. L. Second order elastic constants for Lennard-Jones solid. Phys. Rev. B 29, 4368–4674 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Inelastic scattering data were acquired at Argonne National Laboratory: these measurements were supported by the US DOE-BES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Tse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, J., Klug, D., Tulk, C. et al. The mechanisms for pressure-induced amorphization of ice Ih. Nature 400, 647–649 (1999). https://doi.org/10.1038/23216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23216

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing