Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere

Abstract

Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms formore than a few hours (16). The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind3,4, micrometeorite impacts5, thermal desorption6,7,8 and photon-stimulated desorption6,7,8,9,10. But there are few data and no general agreement about which processes dominate5,10,11,12,13,14. Here wereport laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of 250 K by ultraviolet photons (wavelength λ< 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The fluxat the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption7 will also be an important source of atmospheric sodium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photon-stimulated desorption (PSD) and electron-stimulated desorption (ESD) of Na from SiO2 at 250 K.
Figure 2: Velocity distribution for ESD of neutral Na from SiO2 (0.22 ML); electron energy Ee = 200 eV.
Figure 3: Schematic model for photon- or electron-stimulated desorption of neutral Na from SiO2.

Similar content being viewed by others

References

  1. Potter, A. E. J & Morgan, T. H. Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Potter, A. E. J & Morgan, T. H. Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science 241, 675–680 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Potter, A. E. J & Morgan, T. H. Variation of the lunar sodium emission intensity with phase angle. Geophys. Res. Lett. 21, 2263–2266 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Potter, A. E. J & Morgan, T. H. Coronagraphic observation of the lunar sodium surface. J. Geophys. Res. 103, 8581–8586 (1998).

    Article  ADS  Google Scholar 

  5. Morgan, T. H. & Shemansky, D. E. Limits to the lunar atmosphere. J. Geophys. Res. 96, 1351–1367 (1991).

    Article  ADS  Google Scholar 

  6. McGrath, M. A., Johnson, R. E. & Lanzerotti, L. J. Sputtering of sodium on the planet Mercury. Nature 323, 694–696 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Madey, T. E., Yakshinskiy, B. V., Ageev, V. N. & Johnson, R. E. Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon. J. Geophys. Res. 103, 5873–5887 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Sprague, A. L.et al. Distribution and abundance of sodium in Mercury's atmosphere, 1985–1988. Icarus 129, 506–527 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Ip, W. The sodium exosphere and magnetosphere of Mercury. Geophys. Res. Lett. 13, 423–426 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Mendillo, M. & Baumgardner, J. Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse. Nature 377, 404–406 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Hunten, D. M. & Sprague, A. L. Origin and character of the lunar and Mercurian atmospheres. Adv. Space Res. 19, 1551–1560 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Sprague, A. L., Kozlowski, R. W. H. & Hunten, D. M. Caloris Basin: An enhanced source for potassium in Mercury's atmosphere. Science 249, 1140–1143 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Sprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Wells, W. K. & Grosse, F. A. The sodium and potassium atmosphere of the Moon and its interaction with the surface. Icarus 96, 7–42 (1992).

    Article  ADS  Google Scholar 

  14. Mendillo, M., Emery, J. & Flynn, B. Modeling the Moon's extended sodium cloud as a tool for investigating sources of transient atmospheres. Adv. Space Res. 19, 1557–1560 (1997).

    Article  ADS  Google Scholar 

  15. Maschhoff, B. L., Pan, J.-M. & Madey, T. E. Medium-energy backscattered electron diffraction studies of TiO2(110): relation to surface structure. Surf. Sci. 259, 190–206 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Xu, X. & Goodman, D. W. The preparation and characterization of ultra-thin silicon dioxide films on a Mo (110) surface. Surf. Sci. 282, 323–332 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Knotek, M. L. in Desorption Induced by Electronic Transitions (eds. Talk, N. H., Traum, M. M., Tully, J.C. & Madey, T. E.) 139–155 (Springer Ser. in Chemical Physics, Vol. 24, Springer, Berlin, 1983).

    Book  Google Scholar 

  18. Potter, A. E. J & Morgan, T. H. Variation of sodium on Mercury with solar radiation pressure. Icarus 71, 472–477 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Kozlowski, R. W. H., Sprague, A. L. & Hunten, D. M. Observation of potassium in the tenuous lunar atmosphere. Geophys. Res. Lett. 17, 2253–2256 (1990).

    Article  ADS  Google Scholar 

  20. Flynn, B. & Mendillo, M. Simulations of the lunar sodium atmosphere. J. Geophys. Res. 100, 23271–23278 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Hellsing, B., Chakarov, D. V., Österlund, L., Zhdanov, V. P. & Kasemo, B. Photoinduced desorption of potassium atoms from a two-dimensional overlayer on graphite. J. Chem. Phys. 106, 982–1002 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Wilde, M., Beauport, I., Al-Shamery, K. & Freund, H.-J. Photoinduced processes on alkali covered surface: NO desorption from K/Cr2O3(0001). Surf. Sci. 390, 186–193 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Ageev, V. N., Kuznetsov, Yu. A., Yakshinskiy, B. V. Madey, T. E. Electron stimulated desorption of alkali metal ions and atoms: Local surface field relaxation. Nucl. Instrum. Meth. Phys. Res. B 101, 69–72 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Ageev, V. N., Kuznetsov, Yu. A. & Madey, T. E. Electron-stimulated desorption of sodium atoms from an oxidized molybdenum surface. Phys. Rev. B 58, 2248–2252 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Mendillo, M., Baumgardner, J. & Wilson, J. Observational test for the solar wind sputtering origin of the Moon's extended sodium atmosphere. Icarus 137, 13–23 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Heath, D. F. & Thekaekara, M. P. in The Solar Output and its Variation (ed. White, O. R.) 193–212 (Colorado Assoc. Univ. Press, Boulder, 1977).

    Google Scholar 

  27. Kivelson, M. G. & Russel, C. T. Introduction to Space Physics 92 (Cambridge Univ. Press, 1995).

    Google Scholar 

  28. Zhou, X. L., Zhu, X. Y. & White, J. M. Photochemistry at adsorbate/metal interface. Surf. Sci. Rep. 13, 73–220 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Verami, S., Barbieri, C., Benn, C. & Cremonese, G. Possible detection of meteor stream effects on the lunar sodium atmosphere. Planet. Space Sci. 46, 1003–1006 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. E. Johnson, A. L. Sprague, D. M. Hunten, J. Kolodziej and V. N. Ageev for discussion and correspondence. This work was supported in part by the Planetary Atmospheres Division of NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Madey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakshinskiy, B., Madey, T. Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere. Nature 400, 642–644 (1999). https://doi.org/10.1038/23204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing