Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites

Abstract

Colossal magnetoresistance1—an unusually large change of resistivity observed in certain materials following application of magnetic field—has been extensively researched in ferromagnetic perovskite manganites. But it remains unclear why the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced. In these materials, T C varies sensitively with changing chemical pressure; this can be achieved by introducing trivalent rare-earth ions of differing size into the perovskite structure2,3,4, without affecting the valency of the Mn ions. The chemical pressure modifies local structural parameters such as the Mn–O bond distance and Mn–O–Mn bond angle, which directly influence the case of electron hopping between Mn ions (that is, the electronic bandwidth). But these effects cannot satisfactorily explain the dependence of magnetoresistance on T C. Here we demonstrate, using electron microscopy data, that the prototypical (La,Pr,Ca)MnO3 system is electronically phase-separated into a sub-micrometre-scale mixture of insulating regions (with a particular type of charge-ordering) and metallic, ferromagnetic domains. We find that the colossal magnetoresistive effect in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent ferromagnetic domains which can be controlled by applied magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transport and magnetic properties of La5/8−yPryCa3/8MnO3 as a function of temperature and y.
Figure 2: Ferromagnetically-ordered moment and the phase diagram of La5/8−yPryCa3/8MnO3 as a function of average ionic radius (〈r A〉) or y.
Figure 3: Dark-field images for La5/8−yPryCa3/8MnO3 obtained by using a superlattice peak caused by CO.
Figure 4: Schematic illustration of the sub-micrometre-scale coexistence of the x = 1/2-type CO insulating (dark area) and FM metallic (white area) domains.

Similar content being viewed by others

References

  1. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Hwang, H. Y. et al. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Coey, J. M. D. et al. Electronic localization in mixed-valence manganites. Phys. Rev. Lett. 75, 3910–3913 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Khazeni, K. et al. Effect of pressure on the magnetoresistance of single crystal Nd0.5Sr0.366Pb0.14MnO3−δ. Phys. Rev. Lett. 76, 295–298 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Zener, C. Interaction between the d-shells in the transition metals II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  ADS  CAS  Google Scholar 

  6. Radaelli, P. G. et al. Structural effects on the magnetic and transport properties of perovskite A1−xA′xMnO3. Phys. Rev. B 56, 8265–8276 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Cheong, S.-W. & Hwang, H. Y. in Colossal Magnetoresistance Oxides(ed. Tokura, Y.) Ch. 7 (Monogr. in Condensed Matter Sci, Gordon & Breach, London, (1999).

    Google Scholar 

  8. Laukhin, V. et al. Pressure effects on the metal-insulator transition in magnetoresistive manganese perovskites. Phys. Rev. B 56, R10009–R10012 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Hwang, H. Y. et al. Softening and broadening of the zone boundary magnons in Pr0.63Sr0.37MnO3. Phys. Rev. Lett. 80, 1316–1319 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Fernandez-Baca, J. A. et al. Evolution of the low-frequency spin dynamics in ferromagnetic manganites. Phys. Rev. Lett. 80, 4012–4015 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Millis, A. J., Littlewood, P. D. & Shraiman, B. I. Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Roder, H., Zang, J. & Bishop, A. R. Lattice effects in the colossal-magnetoresistance manganites. Phys. Rev. Lett. 76, 1356–1559 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Zhou, J.-S. & Goodenough, J. B. Phonon-assisted double exchange in perovskite manganites. Phys. Rev. Lett. 80, 2665–2668 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Tomioka, Y. et al. Magnetic-field-induced metal-insulator phenomena in Pr1−xCaxMnO3with controlled charge-ordering instability. Phys. Rev. B 53, R1689–1692 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Chen, C. H. & Cheong, S.-W. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3. Phys. Rev. Lett. 76, 4042–4045 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Mori, S., Chen, C. H. & Cheong, S.-W. Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81, 3972–3975 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Chen, C. H., Cheong, S.-W. & Hwang, H. Y. Charge-ordered stripes in La1−xCaxMnO3with x > 0.5. J.Appl. Phys. 81, 4326–4330 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Hilliard, J. E. in Phase Transformations(ed. Cohen, M.) Ch. 12 (Am. Soc. for Metals, Metals Park, Ohio, (1970).

    Google Scholar 

  20. Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors(Springer, New York, (1984).

    Book  Google Scholar 

  21. Hwang, H. Y. & Cheong, S.-W. in Colossal Magnetoresistance Oxides(ed. Tokura, Y.) Ch. 9 (Monogr. in Condensed Matter Sci., Gordon & Breach, London, (1999).

    Google Scholar 

  22. Emery, V. J. & Kivelson, S. A. Frustrated phase separation and high-temperature superconductivity. Physica C 209, 597–621 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Nagaev, E. L. Phase separation in degenerate semiconductors and high-temperature superconductors. Phys. Status Solidi B 186, 9–42 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Goodenough, J. B. & Zhou, J.-S. New forms of phase segregation. Nature 386, 229–230 (1997).

    Article  ADS  CAS  Google Scholar 

  25. De Teresa, J. M. et al. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256–259 (1997).

    Article  ADS  Google Scholar 

  26. Yunoki, S. et al. Phase separation in electronic models for manganites. Phys. Rev. Lett. 80, 845–848 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Allodi, G. et al. Electronic phase separation in lanthanum manganites: evidence from 55Mn NMR. Phys. Rev. B 56, 6036–6046 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Kiryukhin, V. et al. An X-ray induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Asamitsu, A. et al. Current switching of resistive states in mangetoresistive manganites. Nature 388, 50–52 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Fiebig, M. et al. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3. Science 280, 1925–1928 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Zhao, G. et al. Giant oxygen isotope shift in the magnetoresistive perovskite La1−xCaxMnO3−y. Nature 381, 676–678 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We benefitted from the transport system set up by C. Hess, and we thank M.Gershenson, A. Ruckenstein, G. Kotliar, A. J. Millis and N. Furukawa for discussions. We also thank B. Batlogg for magnetic susceptibility measurements. M.U. and S-W.C. were supported by the NSF, and M.U. acknowledges support from the JPSJ Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-W. Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, M., Mori, S., Chen, C. et al. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999). https://doi.org/10.1038/21142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing