Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale chemical and thermal division of the Pacific mantle

Abstract

Isotope analyses of mid-ocean-ridge basalts have led to the identification of large-scale geochemical provinces, with a clear distinction between the Pacific and the Atlantic or Indian Ocean basins1,2. It is widely believed that Pacific ridges are formed from a single, fairly well mixed mantle reservoir3, extending from the Australian–Antarctic discordance to the Juan de Fuca ridge and representing one of the largest chemically coherent mantle domains on the Earth4,5. However, the evidence for this conception is mostly based on samples from the northern Pacific ridges. Here we report Sr, Nd and Pb isotope data from the Pacific Antarctic ridge that reveal different isotopic signatures north and south of the Easter microplate (25° S). The evidence for two large-scale geochemical domains is further strengthened by the observation of different average depths of the ridge axes north and south of the 25° S boundary. This boundary is located at the southeastern end of the Darwin rise/Pacific Superswell area6, which is interpreted as a zone of upwelling7 from the lower mantle that has persisted since Cretaceous times. We propose that this upwelling has led to the separation into two mantle domains with their own convective histories, producing slight differences in their average isotopic signatures and thermal regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bathymetric map of the Pacific spreading system.
Figure 2: Sr–Nd (a) and Pb–Sr (b) isotopic plots.
Figure 3: δ(Nd–Sr) (a) and δ(Sr–Pb) (b) along the Pacific spreading system.

Similar content being viewed by others

References

  1. Dupré, B. & Allègre, C. J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–143 ( 1983).

    Article  ADS  Google Scholar 

  2. White, W. M., Hofmann, A. W. & Puchelt, H. Isotope geochemistry of Pacific mid-ocean ridge basalt. J. Geophys. Res. 92, 4881– 4893 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Cohen, R. S. & O'Nions, R. K. The lead, neodymium and strontium isotopic structure of ocean ridge basalts. J. Petrol. 23, 299–324 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Ferguson, E. M. & Klein, E. M. Fresh basalts from the Pacific Antarctic ridge extend the Pacific geochemical province. Nature 366, 330–333 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotope evidence of a mantle convection boundary at the Australian-Antarctic discordance. Nature 333, 623–629 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Davies, G. F. & Pribac, F. in The Mesozoic Pacific: Geology, Tectonic and Volcanism (eds Pringle, M. S. et al.) 39– 52 (Geophys. Monogr. 77, Am. Geophys. Un., Washington DC, ( 1993).

    Book  Google Scholar 

  7. Castillo, P. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 ( 1988).

    Article  ADS  Google Scholar 

  8. Castillo, P. R., Natland, J., Niu, Y. & Lonsdale, P. F. Sr, Nd and Pb isotopic variation along the Pacific-Antarctic risecrest, 53–57 degrees S: Implications for the composition and dynamics of the South Pacific upper mantle. Earth Planet. Sci. Lett. 154, 109 –125 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Macdougall, J. D. & Lugmair, G. W. Extreme isotopic homogeneity among basalts from the southern East Pacific Rise: mantle or mixing effect? Nature 313, 209– 211 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Macdougall, J. D. & Lugmair, G. W. Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity. Earth Planet. Sci. Lett. 77, 273– 284 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Bach, W.et al. Unusually large Nb-Ta depletions in North Chile ridge basalts at 36 degrees 50′ to 38 degrees 56′ S: Major element, trace element, and isotopic data. Earth Planet. Sci. Lett. 142, 223–240 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Vlastélic, I. et al. Geochemistry of the Hollister Ridge: Relation with the Louisville hotspot and the Pacific-Antarctic Ridge. Earth Planet. Sci. Lett. 160, 777–793 (1998).

    Article  ADS  Google Scholar 

  13. Klein, E. M. & Karsten, J. L. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374, 52–57 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Staudigel, H.et al. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett. 102, 24– 44 (1991).

    Article  ADS  Google Scholar 

  15. McNutt, M. K. & Fisher, K. M. in Seamounts, Islands, and Atolls (eds Keating, B. H., Fryer, P., Batiza, R. & Boehlert, G. W.) 25–34 (Geophys. Monogr. 43, Am. Geophys. Un., Washington DC, (1987).

    Google Scholar 

  16. McNutt, M. K. & Judge, A. V. The superswell and mantle dynamics beneath the South Pacific. Science 248, 969–975 (1990).

    Article  ADS  CAS  Google Scholar 

  17. McNutt, M. K., Winter, E. L., Sager, W. W., Natland, J. H. & Ito, J. The Darwin rise: a Cretaceous superswell. Geophys. Res. Lett. 17, 1101– 1104 (1990).

    Article  ADS  Google Scholar 

  18. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography, and the geoid. Nature 313, 541–545 (1985).

    Article  ADS  Google Scholar 

  19. Dziewonski, A. & Woodhouse, J. Global images of the Earth's interior. Science 236, 37 –48 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W. W. & Klaus, A. Geochemical evidence for a mid-Cretaceous superplume. Geology 26, 151– 154 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU EM—The French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Hémond, C. & Devey, C. W. The Foundation seamount chain, southeastern Pacific: first isotopic evidence of a newly discovered hotspot track. J. Conf. Abs. 1, 255 (1996).

    Google Scholar 

  23. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 ( 1996).

    Article  ADS  CAS  Google Scholar 

  24. Zindler, A., Staudigel, H. & Batiza, R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175–195 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Hanson, G. N. Geochemical evolution of the suboceanic mantle. J. Geol. Soc. Lond. 134, 235–253 ( 1977).

    Article  CAS  Google Scholar 

  26. Sleep, N. Tapping of magmas from ubiquitous mantle heterogeneities: an alternative to mantle plume? J. Geophys. Res. 89, 10029 –10041 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 ( 1997).

    Article  CAS  Google Scholar 

  29. Bach, W., Hegner, E., Erzinger, J. & Satir, M. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 degrees S to 30 degrees S. Contrib. Mineral. Petrol. 116, 365–380 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Géli, L.et al . Evolution of the Pacific-Antarctic Ridge south of the Udintsev fracture zone. Science 278, 1281– 1284 (1997).

    Article  ADS  Google Scholar 

  31. Londsdale, P. Geomorphology and structural segmentation of the crest of the Southern (Pacific-Antarctic) East Pacific Rise. J. Geophys. Res. 99, 4683–4702 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Bollinger, and M. Bohn for their help in the laboratory, Captain G. Tredunit and the crew of RV L'Atalante for their efforts during the PACANTARCTIC cruise, and P.R.Castillo and B. Hanan for comments. This work was supported by Institut National des Sciences de l'Univers (INSU) and IFREMER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dosso.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlastélic, I., Aslanian, D., Dosso, L. et al. Large-scale chemical and thermal division of the Pacific mantle. Nature 399, 345–350 (1999). https://doi.org/10.1038/20664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20664

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing