Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy

Abstract

A complete understanding of any complex molecular system generally requires a knowledge of the three-dimensional (3D) orientation of its components relative both to each other, and to directional perturbations such as interfaces and electromagnetic fields. Far-field polarization microscopy is a convenient and widespread technique for detecting and measuring the orientation of single chromophores. But because the polarized electromagnetic field that is used to probe the system lacks a significant longitudinal component, it was thought that, in general, only 2D orientation information could be obtained1,2,3. Here we demonstrate that far-field polarization microscopy can yield the 3D orientation of certain highly symmetric single chromophores (CdSe nanocrystal quantum dots in the present case). The key requirement is that the chromophores must have a degenerate transition dipole oriented isotropically in two dimensions, which gives rise to a perpendicular ‘dark axis’ that does not couple to the light field. By measuring the fluorescence intensity from the dipole as a function of polarization angle, it is possible to calculate both the tilt angle between the dark axis and the sample plane, as well as the in-plane orientation, and hence obtain the 3D orientation of the chromophore

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarization dependence.
Figure 2: Polarization statistics.
Figure 3: Polarization versus spectral diffusion.
Figure 4: Polarized emission at room temperature.

Similar content being viewed by others

References

  1. Guttler, F. et al. Single molecule polarization spectroscopy: pentacene in p-terphenyl. Chem. Phys. 211, 421–430 (1996).

    Article  Google Scholar 

  2. Macklin, J. J. et al. Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Ha, T. et al. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Betzig, E. & Chichester, R. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Dickson, R. M., Norris, D. J. & Moerner, W. E. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81, 5322–5325 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Sepiol, J., Jasny, J., Keller, J. & Wild, U. P. Single molecules observed by immersion mirror objective. The orientation of terrylene molecules via the direction of its transition dipole moment. Chem. Phys. Lett. 273, 444–448 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bopp, M. A. et al. Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions. Appl. Phys. Lett. 73, 7–9 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Callomon, J. H., Dunn, T. M. & Mills, I. M. Rotational analysis of the 2600 Å absorption system of benzene. Phi. Trans. R. Soc. Lond. A 259, 499–532 (1966).

    Article  ADS  CAS  Google Scholar 

  10. Kneipp, K. et al. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Tittel, J. et al. Investigations of the emission properties of single CdS-nanocrystallites. Ber. Bunsenges. Phys. Chem. 101, 1626–1630 (1997).

    Article  CAS  Google Scholar 

  13. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  14. Efros, Al. L. Luminescence polarization of CdSe microcrystals. Phys. Rev. B 46, 7448–7458 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Efros, Al. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 1–14 (1996).

    Article  Google Scholar 

  16. Shaing, J. J. et al. Symmetry of annealed wurtzite CdSe nanocrystals: assignment to the C3vpoint group. J. Phys. Chem. 99, 17417–17422 (1995).

    Article  Google Scholar 

  17. Franceschetti, A., Fu, H., Wang, L. W. & Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe QDs. Phys. Rev. B. (in the press).

  18. Leung, K., Pokrant, S. & Whaley, K. B. Exciton fine structure in CdSe nanoclusters. Phys. Rev. B 57, 12291–12301 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Kovalev, E. et al. Optically induced polarization anisotropy in porous Si. Phys. Rev. Lett. 77, 2089–2092 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Bruchez, M. Jr. et al. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Chan, C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 381, 2016–2018 (1998).

    Article  ADS  Google Scholar 

  22. Hines, M. A. & Guyot Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  23. Dabbousi, B. O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  24. Fattinger, C. & Lukosz, W. Optical-environment-dependent lifetimes and radiation patterns of luminescent centers in very thin films. J. Lumin. 31&32, 933–935 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. P. Efros for discussions. S.A.E. thanks the Lester Wolfe Foundation and Eastman Chemical Co. for fellowships. This work was funded in part by the NSF-MRSEC program and the AT&T Foundation. We thank the M.I.T. Harrison Spectroscopy laboratory for support and for use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Bawendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Empedocles, S., Neuhauser, R. & Bawendi, M. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999). https://doi.org/10.1038/20138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20138

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing