Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of altered gene order or orientation of the locus control region on human β-globin gene expression in mice

Abstract

The five human β-type-globin genes, ε, Gγ, Aγ, δ and β, are close together and are regulated by a locus control region (LCR) located at the 5′ end of the locus1,2. Here we investigate the functional consequences of this organization with respect to temporal regulation of the individual genes, by using recombination techniques to invert the order of either the genes or the LCR in vivo. Our analysis of transgenic mice bearing either normal or mutant transgenes leads to two new observations. First, the position of the ε-globin gene next to the LCR is mandatory for its expression during the yolk-sac stage of erythropoiesis. Second, LCR activity is orientation dependent, and so the LCR does not act as a simple enhancer to stimulate transcription of the globin genes. Thus, in the absence of any change in transgene integration position, transgene copy number, trans-acting factors or other resident genetic information, simple inversion of the human genes or the LCR fundamentally alters the transcription of β-type globin genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of the human β-globin YACs.
Figure 2: Expression of human β-like-globin genes in gene-inverted YAC transgenic mice.
Figure 3: Expression of human β-like-globin genes in LCR-inverted YAC transgenic mice.
Figure 4: ε-globin is not expressed when positioned 5′ of the LCR.

Similar content being viewed by others

References

  1. Stamatoyannopoulos, G. & Nienhuis A. W. in The Molecular Basis of Blood Diseases 2nd edn (eds Stamatoyannopoulos, G., Nienhuis, A. W., Majerus, P. & Varmus, H.107–155 (Saunders, New York, (1994).

    Google Scholar 

  2. Hardison, R. et al. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene 205, 73–94 (1997).

    Article  CAS  Google Scholar 

  3. Hanscombe, O. et al. Importance of globin gene order for correct developmental expression. Genes Dev. 5, 1387–1394 (1991).

    Article  CAS  Google Scholar 

  4. Peterson, K. R. & Stamatoyannopoulos, G. Role of gene order in developmental control of human γ- and β-globin gene expression. Mol. Cell. Biol. 13, 4836–4843 (1993).

    Article  CAS  Google Scholar 

  5. Dillon, N., Trimborn, T., Strouboulis, J., Fraser, P. & Grosveld, F. The effect of distance on long-range chromatin interactions. Mol. Cell 1, 131–139 (1997).

    Article  CAS  Google Scholar 

  6. Choi, O. -R. & Engel, J. D. Developmental regulation of β-globin gene switching. Cell 55, 17–26 (1988).

    Article  CAS  Google Scholar 

  7. Foley, K. P. & Engel, J. D. Individual stage selector element mutations lead to reciprocal changes in β- vs. ε-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 6, 730–744 (1992).

    Article  CAS  Google Scholar 

  8. Martin, D. I. K., Fiering, S. & Groudine, M. Regulation of β-globin gene expression: straightening out the locus. Curr. Opin. Genet. Dev. 6, 488–495 (1996).

    Article  CAS  Google Scholar 

  9. Bungert, J. et al. Synergistic regulation of human β-globin gene switching by locus control region elements HS3 and HS4. Genes Dev. 9, 3083–3096 (1995).

    Article  CAS  Google Scholar 

  10. Milot, E. et al. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87, 105–114 (1996).

    Article  CAS  Google Scholar 

  11. Sauer, B. & Henderson, N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161 (1989).

    Article  CAS  Google Scholar 

  12. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Gaensler, K. M., Kitamura, M. & Kan, Y. W. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human β-globin locus in transgenic mice. Proc. Natl Acad. Sci. USA 90, 11381–11385 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Liu, Q., Bungert, J. & Engel, J. D. Mutation of gene-proximal regulatory elements disrupts human ε-, γ-, and β-globin expression in yeast artificial chromosome transgenic mice. Proc. Natl Acad. Sci. USA 94, 169–174 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Enver, T. et al. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344, 309–313 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics invivo. Nature 377, 209–213 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Reik, A. et al. The locus control region is necessary for gene expression in the human β-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18, 5992–6000 (1998).

    Article  CAS  Google Scholar 

  18. Li, Q. & Stamatoyannopoulos, G. Hypersensitive site 5 of the human β locus control region functions as a chromatin insulator. Blood 84, 1399–1401 (1994).

    CAS  PubMed  Google Scholar 

  19. Zafarana, G., Raguz, S., Pruzina, S., Grosveld, F. & Meijer, D. in Molecular Biology of Hemoglobin Switching(ed. Stamatoyannopoulos, G.) 39–44 (Intercept, Andover, (1995).

    Google Scholar 

  20. Fraser, P., Pruzina, S., Antoniou, M. & Grosveld, F. Each hypersensitive site of the human β-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev. 7, 106–113 (1993).

    Article  CAS  Google Scholar 

  21. Yu, J., Bock, J. H., Slightom, J. L. & Villeponteau, B. A5′ β-globin matrix-attachment region and the polyoma enhancer together confer position-independent transcription. Gene 139, 139–145 (1994).

    Article  CAS  Google Scholar 

  22. Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo(Cold Spring Harbor Press, Cold Spring Harbor, (1986).

    Google Scholar 

  23. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eucaryotic genome by the cre recombinase. New Biol. 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  24. Liu, Q., Tanimoto, K., Bungert, J. & Engel, J. D. The Aγ-globin 3′ element provides no unique function(s) for human β-globin locus gene regulation. Proc. Natl Acad. Sci. USA 95, 9944–9949 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Tanimoto, J. Fan and R. Arora for help with this work. We also acknowledge the support of the Japan Society for the Promotion of Science and the Naito Foundation (K.T.), the Cooley's Anemia Foundation (K.T. and Q.L.) and the American Heart Association (J.B.) for fellowship support, and the Robert H. Lurie Comprehensive Cancer Center and the NIH for research support (J.B. and J.D.E.)

Author information

Authors and Affiliations

Authors

Additional information

Correspondence and requests for materials should be addressed to J.D.E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanimoto, K., Liu, Q., Bungert, J. et al. Effects of altered gene order or orientation of the locus control region on human β-globin gene expression in mice. Nature 398, 344–348 (1999). https://doi.org/10.1038/18698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18698

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing