Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upward transport of oceanic nitrate by migrating diatom mats

Abstract

The oligotrophic gyres of the open sea are home to a flora that includes the largest known phytoplankton. These rare species migrate as solitary cells or aggregations (mats) between deep nutrient pools (below 80–100 m) and the surface. This migration contributes to new production because of the concomitant upward transport of nitrate1,2,3. But just how significant this contribution is remains uncertain because of the difficulty of making quantitative measurements of these rare cells4. Here we report remote video observations of a previously undersampled class of diatom (Rhizosolenia) mats throughout the upper 150 m of the central North Pacific Ocean. These mats are virtually invisible to divers, and their presence increases the calculated phytoplankton-mediated nitrate transport into the surface ocean by up to a factor of eight. Cruise averages indicate that Rhizosolenia mats transport 18–97 µmol N m−2 d−1; however, this value reached 171 μmol N m−2 d−1 at individual stations, a value equivalent to 59% of the export production5. Although considerable temporal and spatial variability occurs, this means of upward nutrient transport appears to be an important source of new nitrogen to the surface ocean, and may contribute to other regional elemental cycles as well6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nutrient profiles from the VPR stations.
Figure 2: Rhizosolenia mat abundance estimates based on VPR measurements and reports from divers.

Similar content being viewed by others

References

  1. Villareal, T. A. & Lipschultz, F. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea. J. Phycol. 31, 689–696 (1995).

    Article  CAS  Google Scholar 

  2. Villareal, T. A., Altabet, M. A. & Culver-Rymsza, K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709–712 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Villareal, T. A., Woods, S., Moore, J. K. & Culver-Rymsza., K. Vertical migration of Rhizosolenia mats and their significance to NO3 fluxes in the central North Pacific gyre. J. Plankt. Res. 18, 1103–1121 (1996).

    Article  Google Scholar 

  4. Richardson, T. L., Cullen, J. J., Kelley, D. E. & Lewis, M. R. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankt. Res. 20, 219–241 (1998).

    Article  Google Scholar 

  5. Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Brzezinski, M. A., Villareal, T. A. & Lipschultz, F. Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Mar. Ecol. Prog. Ser. 167, 89–101 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Carpenter, E. J. et al. Rhizosolenia mats. Limnol. Oceanogr. 22, 739–741 (1977).

    Article  Google Scholar 

  8. Villareal, T. A. & Carpenter, E. J. Nitrogen-fixation, suspension characteristics and chemical composition of Rhizosolenia mats in the central North Pacific Gyre. Biol. Oceanogr. 6, 327–345 (1989).

    Google Scholar 

  9. Banse, K. Clouds, deep chlorophyll maxima and the nutrient supply to the mixed layer of stratified water bodies. J. Plankt. Res. 9, 1031–1036 (1987).

    Article  CAS  Google Scholar 

  10. Emerson, S. & Hayward, T. L. Chemical tracers of biological processes in shallow waters of North Pacific: preformed nitrate distribution. J. Mar. Res. 53, 499–513 (1995).

    Article  CAS  Google Scholar 

  11. Parsons, T. R., Maita, Y. & Lalli, G. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon, New York, (1984)).

    Google Scholar 

  12. Shipe, R. F., Brzezinski, M. A., Pilskaln, C. & Villareal, T. A. Silica production of Rhizosolenia mats in the central North Pacific gyre. (submitted).

  13. Karl, D. M. HOT and the North Pacific Ocean. Nature 378, 21–22 (1995).

    Article  ADS  Google Scholar 

  14. Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation. Deep-Sea Res. 43 Part II, 129–156 (1996).

    ADS  Google Scholar 

  15. Karl, D. M., Hebel, D. V., Björkman, K. & Letelier, R. M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  17. Goldman, J. C. in Toward a Theory on Biological-Physical Interactions in the World Ocean (ed. Rothschild, B. J.) 273–296 (Kluwer Academic, Dordrecht, (1988)).

    Book  Google Scholar 

  18. Hayward, T. L. The shallow oxygen maximum layer and primary production. Deep-Sea Res. 41, 559–574 (1994).

    Article  CAS  Google Scholar 

  19. Yoder, J. A., Ackleson, S. & Balch, W. M. Aline in the sea. Nature 371, 689–671 (1994).

    Article  ADS  Google Scholar 

  20. McGillicuddy, D. J. J & Robinson, A. R. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. 44, 1427–1450 (1997).

    Article  CAS  Google Scholar 

  21. Hall, M. M., Niiler, P. P. & Schmitz, W. J. J Circulation in the eastern North Pacific: results from a current meter array along 152° W. Deep-Sea Res. 44, 1127–1146 (1997).

    Article  Google Scholar 

  22. Davis, C. S., Gallager, S. M., Berman, M. S., Haury, L. R. & Strickler, J. R. The Video Plankton Recorder (VPR): Design and initial results. Ergeb. Limnol. 32, 67–81 (1992).

    Google Scholar 

  23. Alldredge, A. L. & Silver, M. W. Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and Rhizosolenia imbricata var. shrubsolei) in the eastern Pacific Ocean. Mar. Biol. 66, 83–88 (1982).

    Article  Google Scholar 

  24. Pilskaln, C. H., Lehmann, C., Paduan, J. B. & Silver, M. W. Spatial and temporal dynamics in marine aggregate abundance, sinking rate, and flux: Monterey Bay, central California. Deep-Sea Res.(in the press).

  25. Martinez, L., Silver, M. W., King, J. M. & Alldredge, A. L. Nitrogen fixation by floating diatom mats: a source of new nitrogen to oligotrophic ocean waters. Science 221, 152–154 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Joseph, A. Mansfield, C. L. De La Rocha, R. Shipe, W. Golden, S.Gallager, C. Lehmann and C. Darkangelo for providing diving and technical support. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy A. Villareal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villareal, T., Pilskaln, C., Brzezinski, M. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999). https://doi.org/10.1038/17103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing