Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progenitor Cell Mobilization

Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost

Summary:

Inadequate stem cell mobilization is seen in approximately 25% of patients undergoing autotransplantation for hematologic malignancies. Remobilization strategies include chemotherapy/cytokine combinations or high-dose cytokines alone or in combination. From 1/1997 to 7/2002, we remobilized 86 patients who failed an initial mobilization (median total CD34=0.72 × 106/kg) in sequential cohorts using high-dose G-CSF (32 μg/kg/day) or G-CSF(10 μg/kg/day)+GM-CSF (5 μg/kg/day). No difference in CD34/kg yields were seen (G-CSF alone: 2.2 × 106 and G-CSF+GM-CSF 1.6 × 106) in the median 3 aphereses performed (P=0.333). Of the 86, 23 (27%) failed the second mobilization; 14 were remobilized again (yield=1.5 × 106 CD34/kg; three aphereses). Of the 86, 93% went to transplant: three progressed, and three had inadequate stem cells. Significant risk factors for a failed remobilization were: number of stem-cell-damaging regimens (P=0.015), time between last chemotherapy and first mobilization (P=0.028), and higher WBC at initiation of first mobilization (P=0.04). High-dose G-CSF (32 μg/kg/day) was more costly @ $9,016, vs $5,907 for the G-CSF+GM-CSF combination (P<0.001). Most patients failing an initial mobilization benefit from a cytokine only remobilization. Lower cost G-CSF+GM-CSF is as effective as high-dose G-CSF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Stiff PJ . Management strategies for the hard-to-mobilize patient. Bone Marrow Transplant 1999; 23 (Suppl. 2): S29–S33.

    Article  PubMed  Google Scholar 

  2. Stiff P . Peripheral blood stem cell mobilization: contemporary issues and early studies using Flt3 ligand. In: Rowe J, Lazarus H, Carella A (eds). Handbook of Bone Marrow Transplantation. London: Martin Dunitz Ltd, 2000.

    Google Scholar 

  3. Stiff P, Gingrich R, Luger S et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma. Bone Marrow Transplant 2000; 26: 471–481.

    Article  CAS  PubMed  Google Scholar 

  4. Gazitt Y, Freytes CO, Callander N et al. Successful PBSC mobilization with high-dose G-CSF for patients failing a first round of mobilization. J Hematother 1999; 8: 173–183.

    Article  CAS  PubMed  Google Scholar 

  5. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  6. Weaver CH, Potz J, Redmond J et al. Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34+ cell content. Bone Marrow Transplant 1997; 19: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  7. Canales MA, Arrieta R, Hernandez-Garcia MC et al. Factors influencing collection and engraftment of CD34+ cells in patients with breast cancer following high-dose chemotherapy and autologous peripheral blood progenitor cell transplantation. J Hematother Stem Cell Res 2000, 9103–9109.

  8. Glaspy JA . Economic considerations in the use of peripheral blood progenitor cells to support high-dose chemotherapy. Bone Marrow Transplant 1999; 23 (Suppl 2): S21–7.

    Article  PubMed  Google Scholar 

  9. van der Wall E, Richel DJ, Holtkamp MJ et al. Bone marrow reconstitution after high-dose chemotherapy and autologous peripheral blood progenitor cell transplantation: effect of graft size. Ann Oncol 1994; 5: 795–802.

    Article  CAS  PubMed  Google Scholar 

  10. Remes K, Matinlauri I, Grenman S et al. Daily measurements of blood CD34+ cells after stem cell mobilization predict stem cell yield and posttransplant hematopoietic recovery. J Hematother 1997; 6: 13–19.

    Article  CAS  PubMed  Google Scholar 

  11. Kiss JE, Rybka WB, Winkelstein A et al. Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1997; 19: 303–310.

    Article  CAS  PubMed  Google Scholar 

  12. Moskowitz CH, Glassman JR, Wuest D et al. Factors affecting mobilization of peripheral blood progenitor cells in patients with lymphoma. Clin Cancer Res 1998; 4: 311–316.

    CAS  PubMed  Google Scholar 

  13. Haas R, Mohle R, Fruhauf S et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1994; 83: 3787–3794.

    CAS  PubMed  Google Scholar 

  14. Ketterer N, Salles G, Moullet I et al. Factors associated with successful mobilization of peripheral blood progenitor cells in 200 patients with lymphoid malignancies. Br J Haematol 1998; 10: 235–242.

    Article  Google Scholar 

  15. Sautois B, Fraipont V, Baudoux E et al. Peripheral blood progenitor cell collections in cancer patients: analysis of factors affecting the yields. Haematologica 1999; 84: 342–349.

    CAS  PubMed  Google Scholar 

  16. Goldschmidt H, Hegenbart U, Wallmeier M et al. Factors influencing collection of peripheral blood progenitor cells following high-dose cyclophosphamide and granulocyte colony-stimulating factor in patients with multiple myeloma. Br J Haematol 1997; 98: 736–744.

    Article  CAS  PubMed  Google Scholar 

  17. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995; 13: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  18. Shepherd KM, Charles P, Sage RE et al. Mobilization of haemopoietic stem cells by cyclophosphamide into the peripheral blood of patients with haematological malignancies. Clin Lab Haematol 1991; 13: 25–32.

    Article  CAS  PubMed  Google Scholar 

  19. Bensinger WI, Longin K, Appelbaum F et al. Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): an analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol 1994; 87: 825–831.

    Article  CAS  PubMed  Google Scholar 

  20. Dreger P, Kloss M, Petersen B et al. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 1995; 86: 3970–3978.

    CAS  PubMed  Google Scholar 

  21. Vantelon JM, Koscielny S, Brault P et al. Scoring system for the prediction of successful peripheral blood stem cell (PBSC) collection in non-Hodgkin's lymphoma (NHL): application in clinical practice. Bone Marrow Transplant 2000; 25: 495–499.

    Article  CAS  PubMed  Google Scholar 

  22. Sugrue MW, Williams K, Pollock BH et al. Characterization and outcome of ‘hard to mobilize’ lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2000; 39: 509–519.

    Article  CAS  PubMed  Google Scholar 

  23. Kroger N, Zeller W, Hassan HT et al. Successful mobilization of peripheral blood stem cells in heavily pretreated myeloma patients with G-CSF alone. Ann Hematol 1998; 76: 257–262.

    Article  CAS  PubMed  Google Scholar 

  24. Tricot G, Jagannath S, Vesole D et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  PubMed  Google Scholar 

  25. Prince HM, Imrie K, Sutherland DR et al. Peripheral blood progenitor cell collections in multiple myeloma: predictors and management of inadequate collections. Br J Haematol 1996; 93: 142–145.

    Article  CAS  PubMed  Google Scholar 

  26. Visani G, Lemoli RM, Tosi P et al. Fludarabine-containing regimens severely impair peripheral blood stem cells mobilization and collection in acute myeloid leukaemia patients. Br J Haematol 1999; 105: 775–779.

    Article  CAS  PubMed  Google Scholar 

  27. Passos-Coelho JL, Braine HG, Davis JM et al. Predictive factors for peripheral-blood progenitor-cell collections using a single large-volume leukapheresis after cyclophosphamide and granulocyte–macrophage colony-stimulating factor mobilization. J Clin Oncol 1995; 13: 705–714.

    Article  CAS  PubMed  Google Scholar 

  28. Kroger N, Rauhoft C, Zeller W et al. Efficacy of further attempts to mobilize CD34+ peripheral stem cells with alternative procedures after primary failure. Acta Haematol 2000; 102: 144–147.

    Article  CAS  PubMed  Google Scholar 

  29. Weaver CH, Tauer K, Zhen B et al. Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields. J Hematother 1998; 7: 241–249.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez C, Urbano-Ispizua A, Marin P et al. Efficacy and toxicity of a high-dose G-CSF schedule for peripheral blood progenitor cell mobilization in healthy donors. Bone Marrow Transplant 1999; 24: 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  31. Grigg AP, Roberts AW, Raunow H et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 1995; 86: 4437–4445.

    CAS  PubMed  Google Scholar 

  32. Waller CF, Bertz H, Wenger MK et al. Mobilization of peripheral blood progenitor cells for allogeneic transplantation: efficacy and toxicity of a high-dose rhG-CSF regimen. Bone Marrow Transplant 1996; 18: 279–283.

    CAS  PubMed  Google Scholar 

  33. Stroncek DF, Clay ME, Petzoldt ML et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion 1996; 36: 601–610.

    Article  CAS  PubMed  Google Scholar 

  34. Hoglund M, Smedmyr B, Simonsson B et al. Dose-dependent mobilisation of haematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant 1996; 18: 19–27.

    CAS  PubMed  Google Scholar 

  35. Dreger P, Haferlach T, Eckstein V et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 1994; 87: 609–613.

    Article  CAS  PubMed  Google Scholar 

  36. Kobbe G, Sohngen D, Bauser U et al. Factors influencing G-CSF-mediated mobilization of hematopoietic progenitor cells during steady-state hematopoiesis in patients with malignant lymphoma and multiple myeloma. Ann Hematol 1999; 78: 456–462.

    Article  CAS  PubMed  Google Scholar 

  37. Zeller W, Cassens U, Stockschlader M et al. Higher dose of G-CSF increases yield of mobilized CD34+ cells. Blood 1994; 84 (Suppl 1): 106a.

    Google Scholar 

  38. Nademanee A, Sniecinski I, Schmidt GM et al. High-dose therapy followed by autologous peripheral-blood stem-cell transplantation for patients with Hodgkin's disease and non-Hodgkin's lymphoma using unprimed and granulocyte colony-stimulating factor-mobilized peripheral-blood stem cells. J Clin Oncol 1994; 12: 2176–2186.

    Article  CAS  PubMed  Google Scholar 

  39. Zeller W, Gutensohn K, Stockschlader M et al. Increase of mobilized CD34-positive peripheral blood progenitor cells in patients with Hodgkin's disease, non-Hodgkin's lymphoma, and cancer of the testis. Bone Marrow Transplant 1996; 17: 709–713.

    CAS  PubMed  Google Scholar 

  40. Engelhardt M, Bertz H, Afting M et al. High-versus standard-dose filgrastim (rhG-CSF) for mobilization of peripheral-blood progenitor cells from allogeneic donors and CD34(+) immunoselection. J Clin Oncol 1999; 17: 2160–2172.

    Article  CAS  PubMed  Google Scholar 

  41. Weaver CH, Birch R, Greco FA et al. Mobilization and harvesting of peripheral blood stem cells: randomized evaluations of different doses of filgrastim. Br J Haematol 1998; 100: 338–347.

    Article  CAS  PubMed  Google Scholar 

  42. Winter JN, Lazarus HM, Rademaker A et al. Phase I/II study of combined granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor administration for the mobilization of hematopoietic progenitor cells. J Clin Oncol 1996; 14: 277–286.

    Article  CAS  PubMed  Google Scholar 

  43. Bashey A, Corringham S, Fields K et al. Use of concurrent GM-CSF and G-CSF administration to re-mobilize patients who fail initial mobilization: results on twenty-three patients from two centers. Blood 1999; 94 (Suppl. 1): 327a.

    Google Scholar 

  44. Lane TA, Law P, Maruyama M et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte–macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood 1995; 85: 275–282.

    CAS  PubMed  Google Scholar 

  45. Madero L, Gonzalez-Vicent M, Molina J et al. Use of concurrent G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells in children with malignant disease. Bone Marrow Transplant 2000; 26: 365–369.

    Article  CAS  PubMed  Google Scholar 

  46. Spitzer G, Mathews M, Dunphy F et al. Are growth factor (GF) combinations superior to G-CSF alone for mobilization of peripheral blood stem cells (PBSC): a randomized study comparing G-CSF to G-CSF with GM-CSF for PBSC mobilization. Blood 1994; 84 (Suppl. 1): 107a.

    Google Scholar 

  47. Meisenberg B, Brehm T, Schmeckel A et al. A combination of low-dose cyclophosphamide and colony-stimulating factors is more cost-effective than granulocyte-colony-stimulating factors alone in mobilizing peripheral blood stem and progenitor cells. Transfusion 1998; 38: 209–215.

    Article  CAS  PubMed  Google Scholar 

  48. Meehan KR, Areman EM, Ericson SG et al. Mobilization, collection, and processing of autologous peripheral blood stem cells: development of a clinical process with associated costs. J Hematother Stem Cell Res 2000; 9: 767–771.

    Article  CAS  PubMed  Google Scholar 

  49. Smith TJ, Hillner BE, Schmitz N et al. Economic analysis of a randomized clinical trial to compare filgrastim-mobilized peripheral-blood progenitor-cell transplantation and autologous bone marrow transplantation in patients with Hodgkin's and non-Hodgkin's lymphoma. J Clin Oncol 1997; 15: 5–10.

    Article  CAS  PubMed  Google Scholar 

  50. Weaver A, Wrigley E, Watson A et al. A study of ovarian cancer patients treated with dose-intensive chemotherapy supported with peripheral blood progenitor cells mobilised by filgrastim and cyclophosphamide. Br J Cancer 1996; 74: 1821–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Glaspy JA, Shpall EJ, LeMaistre CF et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.

    CAS  PubMed  Google Scholar 

  52. Andrews RG, Briddell RA, Knitter GH et al. In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in baboons enhanced circulation of progenitor cells. Blood 1994; 84: 800–810.

    CAS  PubMed  Google Scholar 

  53. Shpall EJ, Wheeler CA, Turner SA et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 1999; 93: 2491–2501.

    CAS  PubMed  Google Scholar 

  54. Stiff P, Gingrich R, Luger S et al. Improved PBPC collection using STEMGEN (stem cell factor, SCF) and filgrastim (G-CSF) compared to G-CSF alone in heavily pre-treated lymphoma (NHL) and Hodgkin's disease (HD) patients (pts). Blood 1997; 91 (Suppl. 1): 591a.

    Google Scholar 

  55. Chao N, Litzow M, Geller R et al. Randomized phase II study of FLT3 ligand (Mobist) in combination with GM-CSF or G-CSF for mobilization of peripheral blood progenitor cells in patients with breast cancer. Blood 1999; 94: 666a.

    Google Scholar 

  56. Stiff P, Beveridge R, Vose J et al. Randomized phase II study of FLT 3 ligand (Mobist) in combination with GM-CSF or G-CSF for mobilization of peripheral blood progenitor cells in patients with lymphoma or ovarian cancer. Blood 1999; 94: 666a.

    Google Scholar 

  57. Kuter DJ, Begly CG . Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 2002; 100: 3457–3469.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Loyola BMT team including the NP and nursing staffs, the apheresis team, headed by Catherine Shipp RN, our BMT coordinators, Pamela Schumaker, RN and Sheila Wojtowicz, RN, our BMT social worker, Shari Lichtenstein MSW, our BMT laboratory staff including Mala Parthasarathy and David Oldenberg, and the physician attending staff including Drs Amir Toor, Robert Bayer and Deepak Malhotra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Stiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeve, S., Strupeck, J., Creech, S. et al. Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant 33, 997–1003 (2004). https://doi.org/10.1038/sj.bmt.1704486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704486

Keywords

This article is cited by

Search

Quick links