Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanometre-scale rolling and sliding of carbon nanotubes

Abstract

Understanding the relative motion of objects in contact is essential for controlling macroscopic lubrication and adhesion, for comprehending biological macromolecular interfaces, and for developing submicrometre-scale electromechanical devices1,2. An object undergoing lateral motion while in contact with a second object can either roll or slide. The resulting energy loss and mechanical wear depend largely on which mode of motion occurs. At the macroscopic scale, rolling3 is preferred over sliding, and it is expected to have an equally important role in the microscopic domain. Although progress has been made in our understanding of the dynamics of sliding at the atomic level4, we have no comparable insight into rolling owing to a lack of experimental data on microscopic length scales. Here we produce controlled rolling of carbon nanotubes on graphite surfaces using an atomic force microscope. We measure the accompanying energy loss and compare this with sliding. Moreover, by reproducibly rolling a nanotube to expose different faces to the substrate and to an external probe, we are able to study the object over its complete surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sliding carbon nanotube.
Figure 2: Rolling carbon nanotube.

Similar content being viewed by others

References

  1. Persson, B. N. J. Sliding Friction: Physical Properties and Applications(Springer, Berlin, (1998)).

    Book  Google Scholar 

  2. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, K. L. Contact Mechanics(Cambridge University Press, New York, (1994)).

    Google Scholar 

  4. Mate, M. C., McClelland, G. M., Erlandsson, R. & Chiang, S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Israelachvili, J. Intermolecular and Surface Forces(Academic, San Diego, (1991)).

    Google Scholar 

  6. Binnig, G., Quate, C. F. & Gerbre, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Sheehan, P. E. & Lieber, C. M. Nanotribology and nanofabrication of MoO3structures by atomic force microscopy. Science 272, 1158–1161 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, K. L. in Micro/nanotribology and its Applications(ed. Bhushan, B.) 157 (Kluwer Academic, Dordrecht, The Netherlands, (1997)).

    Google Scholar 

  9. Hirano, H., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Overney, R. M., Takano, H., Fujihira, M., Paulus, W. & Ringsdorf, H. Anisotropy in friction and molecular stick–slip motion. Phys. Rev. Lett. 72, 3546–3549 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Luthi, R. et al. Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60. Science 266, 1979–1981 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Hertel, T., Martel, R. & Avouris, P. Manipulation of individual carbon nanotubes and their interactions with surfaces. J. Phys. Chem. B 102, 910–915 (1998).

    Article  CAS  Google Scholar 

  14. Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Bhushan, B., Gupta, B. K., Van Cleef, G. W., Capp, C. & Coe, J. V. Sublimed C60 films for tribology. Appl. Phys. Lett. 62, 3253–3255 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Schwarz, U. D., Zworner, O., Koster, P. & Wiesendanger, R. Quantitative analysis of the frictional properties of solid materials at low loads. 1. Carbon compounds. Phys. Rev. B 56, 6987–6996 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Ebbesen, T. W. & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Taylor, R. M. et al. SIGGRAPH '93(ACM SIGGRAPH, New York, (1993)).

    Google Scholar 

  19. Finch, M. et al. ACM Symposium on Interactive 3D Graphics(ACM SIGGRAPH, Monterey, California, (1995)).

    Google Scholar 

  20. Prescott, J. Mechanics of Particles and Rigid Bodies(Longmans, Green and Co., London, (1936)).

    MATH  Google Scholar 

  21. Baur, C. et al. Robotic nanomanipulation with a scanning probe microscope in a networked computing environment. J. Vac. Sci. Tech. B 15, 1577–1580 (1997).

    Article  CAS  Google Scholar 

  22. Mason, M. T. & Salisbury, J. K. J. Robot Hands and the Mechanics of Manipulation(MIT Press, Cambridge, Massachusetts, (1985)).

    Google Scholar 

  23. Ebbesen, T. W. & Takada, T. Topological and sp3 defect structures in nanotubes. Carbon 33, 973–978 (1995).

    Article  CAS  Google Scholar 

  24. Kendall, K. Rolling friction and adhesion between smooth solids. Wear 33, 351–358 (1975).

    Article  Google Scholar 

  25. Chaudhury, M. J., Weaver, T., Hui, C. Y. & Kramer, E. J. Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80, 30–37 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Zhou for CNT soot material, S. Paulson for helping to solve sample-preparation problems, and the entire Nanomanipulator team. The NSF, the NIH, the Office of Naval Research, and Topometrix Inc. provided financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Superfine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falvo, M., Taylor II, R., Helser, A. et al. Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999). https://doi.org/10.1038/16662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16662

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing