Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel

Abstract

The separation of macromolecules such as polymers and DNA by means of electrophoresis, gel permeation chromatography or filtration exploits size-dependent differences in the time it takes for the molecules to migrate through a random porous network. Transport through the gel matrices, which usually consist of full swollen crosslinked polymers1,2,3,4,5,6,7,8,9,10,11, depends on the relative size of the macromolecule compared with the pore radius. Sufficiently small molecules are thought to adopt an approximately spherical conformation when diffusing through the gel matrix1, whereas larger ones are forced to migrate in a snake-like fashion3,4,5. Molecules of intermediate size, however, can get temporarily trapped in the largest pores of the matrix, where the molecule can extend and thus maximize its conformational entropy. This ‘entropic trapping’ is thought to increase the dependence of diffusion rate on molecular size6,7,8,9,10,11,12,13,14,15,16. Here we report the direct experimental verification of this phenomenon. Bragg diffraction from a hydrogel containing a periodic array of monodisperse water voids confirms that polymers of different weights partition between the hydrogel matrix and the water voids according to the predictions of the entropic trapping theory. Our approach might also lead to the design of improved separation media based on entropic trapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of hydrogel with a cubic array of spherical water voids.
Figure 2: Bragg diffraction probes the chemical composition of HPCCA.
Figure 3: Dependence of NaPSS partitioning on molecular mass and concentration.

Similar content being viewed by others

References

  1. Rodbard, D. & Chrambach, A. Unified theory for gel electrophoresis and gel filtration. Proc. Natl. Acad. Sci. USA 65, 970–977 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Teraoka, I. Interferometric study of transition from weak to strong penetration of a polymer solution into a porous silica bead. Macromolecules 29, 2430–2439 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Lerman, L. S. & Frisch, H. L. Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21, 995–997 (1982).

    Article  CAS  Google Scholar 

  4. Lumpkin, O. J., Dejardin, P. & Zimm, B. H. Theory of gel electrophoresis of DNA. Biopolymers 24, 1573–1593 (1985).

    Article  CAS  Google Scholar 

  5. Slater, G. W. & Noolandi, J. On the reptation theory of gel electrophoresis. Biopolymers 25, 431–454 (1986).

    Article  CAS  Google Scholar 

  6. Guillot, G., Leger, L. & Rondelez, F. Diffusion of large flexible polymer chains through model porous membranes. Macromolecules 18, 2531–2537 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Rotstein, N. A. & Lodge, T. P. Tracer diffusion of linear polystyrenes in poly(vinyl methyl ether) gels. Macromolecules 25, 1316–1325 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Smisek, D. L. & Hoagland, D. A. Electrophoresis of flexible macromolecules: evidence for a new mode of transport in gels. Science 248, 1221–1223 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Muthukumar, M. & Hoagland, D. A. Evidence for entropic barrier transport of linear, star, and ring macromolecules in electrophoresis gels. Macromolecules 25, 6696–6698 (1992).

    Article  ADS  Google Scholar 

  10. Rousseau, J., Drouin, G. & Slater, G. W. Entropic trapping of DNA during gel electrophoresis: effect of field intensity and gel concentration. Phys. Rev. Lett. 79, 1945–1948 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Noolandi, J., Rousseau, J. & Slater, G. W. Self-trapping and anomalous dispersion of DNA in electrophoresis. Phys. Rev. Lett. 58, 2428–2431 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Slater, G. W. & Wu, S. Y. Reptation, entropic trapping, percolation, and Rouse dynamics of polymers in “random” environments. Phys. Rev. Lett. 75, 164–167 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Baumgärtner, A. & Muthukumar, M. Atrapped polymer chain in random porous media. J. Chem. Phys. 87, 3082–3088 (1987).

    Article  ADS  Google Scholar 

  14. Muthukumar, M. & Baumgärtner, A. Effects of entropic barriers on polymer dynamics. Macromolecules 22, 1937–1941 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Kim, H., Chang, T., Yohanan, J. M., Wang, L. & Yu, H. Polymer diffusion in linear matrices: polystyrene in toluene. Macromolecules 19, 2737–2744 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Nemoto, N., Kishine, M., Inoue, T. & Osaki, K. Tracer diffusion of linear polystyrene in entanglement networks. Macromolecules 23, 659–664 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Hiltner, P. A. & Krieger, I. M. Diffraction of light by ordered suspensions. J. Phys. Chem. 73, 2386–2389 (1969).

    Article  CAS  Google Scholar 

  18. Clark, N. A., Hurd, A. J. & Ackerson, B. J. Single colloidal crystals. Nature 281, 57–60 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Kesavamoorthy, R., Tandon, S., Xu, S., Jagannathan, S. & Asher, S. A. Self-assembly and ordering of electrostatically stabilized silica suspensions. J. Colloid Interface Sci. 153, 188–198 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Asher, S. A. Crystalline narrow band radiation filter.US Patent Nos 4,627,689 and 4,632,517 ((1986)).

  21. Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–960 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Rundquist, P. A., Photinos, P., Jagannathan, S. & Asher, S. A. Dynamical Bragg diffraction from crystalline colloidal arrays. J. Chem. Phys. 91, 4932–4941 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Liu, L., Li, P. & Asher, S. a. Fortuitously superimposed lattice plane secondary diffraction from crystalline colloidal arrays. J. Am. Chem. Soc. 119, 2729–2732 (1997).

    Article  CAS  Google Scholar 

  25. Zachariasen, W. H. Theory of X-ray Diffraction in Crystals (Dover, New York, (1957)).

    Google Scholar 

  26. Van de Hulst, H. C. Light Scattering by Small Particles (Dover, New York, (1957)).

    Book  Google Scholar 

  27. Righetti, P. G. Macroporous gels: facts and misfacts. J. Chromatogr. A 698, 3–17 (1995).

    Article  CAS  Google Scholar 

  28. Casassa, E. F. Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids. Polymer Lett. 5, 773–778 (1967).

    Article  CAS  Google Scholar 

  29. Flory, P. J. Principles of Polymer Chemistry (Ithaca, New York, (1953)).

    Google Scholar 

  30. De Gennes, P. G. Scaling Concepts in Polymer Physics (Ithaca, New York, (1979)).

    Google Scholar 

Download references

Acknowledgements

We thank M. D. Morris, D. Pine, J. Holtz, J. M. Weissman and G. Pan for discussions. This work was supported by the Office of Naval Research and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford A. Asher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Li, P. & Asher, S. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397, 141–144 (1999). https://doi.org/10.1038/16426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16426

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing