Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Brown dwarfs: the stars that failed

Abstract

In recent years, new astronomical instruments have reversed three decades of fruitless searching for brown dwarfs, the failed stars that are too small to burn nuclear fuel. These discoveries have confirmed predictions about the importance of methane and dust in the atmospheres of brown dwarfs. But they also demonstrate that, contrary to expectation, brown dwarfs do not contribute significantly to our Galaxy's dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luminosity and temperature as a function of mass and age for stars and brown dwarfs6.
Figure 2: Figure 2 Sequence of optical spectra showing the effects of increasing temperature for the brown dwarfs Gliese 229B35, DENIS-P J1228 − 154731, Kelu-137 and the low-mass star VB1028.

Similar content being viewed by others

References

  1. Kumar, S. S. The structure of stars of very low mass. Astrophys. J. 137, 1121–1125 (1963).

    Article  ADS  Google Scholar 

  2. Tarter, J. C. in Astrophysics of Brown Dwarfs (eds Kafatos, M. C., Harrington, R. S. & Maran, S. P.) 121–138 (Cambridge Univ. Press, (1986).

    Google Scholar 

  3. Laughlin, G., Adams, F. & Bodenheimer, P. in Very Low-mass Stars and Brown Dwarfs in Stellar Clusters and Associations (Cambridge Univ. Press, in the press).

  4. Burrows, A., Hubbard, W. B. & Lunine, J. I. Theoretical models of very low mass stars and brown dwarfs. Astrophys. J. 345, 939– 958 (1989).

    Article  ADS  Google Scholar 

  5. D'Antona, F. & Mazzitelli, I. New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convection model. Astrophys. J. Suppl. Ser. 90, 467 –500 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Chabrier, G., Baraffe, I. & Plez, B. Mass-luminosity relationship and lithium depletion for very low mass stars. Astrophys. J. 459, L91–L94 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Freeman, K. in Unsolved Problems of the MIlky Way (eds Blitz, L. & Teuben, P.) 645–650 (IAU Symp. 169, Kluwer, Dordrecht, ( 1996).

    Book  Google Scholar 

  8. Bodenheimer, P. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martin, E. L. & Zapatero Osorio, M. R.) 115–127 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, (1998 ).

    Google Scholar 

  9. Reid, N. in The Bottom of the Main Sequence—And Beyond (ed. Tinney, C.) 53–62 (Springer, Heidelberg, (1995 ).

    Book  Google Scholar 

  10. Henry, T. J. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martin, E. L. & Zapatero Osorio, M. R.) 28–35 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, (1998).

    Google Scholar 

  11. Marcy, G. & Butler, R. P. Detection of extrasolar giant planets. Annu. Rev. Astron. Astrophys. 36, 56–96 (1998).

    Article  ADS  Google Scholar 

  12. Hambly, N. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martin, E. L. & Zapatero Osorio, M. R.) 11–19 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, (1998).

    Google Scholar 

  13. Bouvier, J. et al. Brown dwarfs and very low-mass stars in the Pleiades cluster: a deep wide-field imaging survey. Astron. Astrophys. 336, 490–502 (1998).

    ADS  Google Scholar 

  14. Stauffer, J., Schultz, G. & Kirkpatrick, J. D. Keck spectra of Pleiades brown dwarf candidates and a precise determination of the lithium depletion edge in the Pleiades. Astrophys. J. 499, L199–L203 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Skrutskie, M. F. et al. in The Impact of Large Scale Near-IR Sky Surveys (eds Garzón, F. et al.) 25–32 (Kluwer, Dordrecht, (1997).

    Book  Google Scholar 

  16. Epchtein, N. in The Impact of Large Scale Near-IR Sky Surveys (eds Garzón, F. et al.) 15–24 (Kluwer, Dordrecht, ( 1997).

    Book  Google Scholar 

  17. Kirkpatrick, J. D. et al. Brown dwarfs discovered by 2MASS and the definition of a new spectral type cooler than “M”. Bull. Am. Astron. Soc. 192, 5504–5504 ( 1998).

    ADS  Google Scholar 

  18. Tsuji, T., Ohnaka, K. & Aoki, W. in The Bottom of the Main Sequence—And Beyond (ed. Tinney, C.) 45–49 (Springer, Heidelberg, (1995).

    Book  Google Scholar 

  19. Tsuji, T., Ohnaka, K. & Aoki, W. Dust formation in stellar photospheres: a case of very low mass stars and a possible resolution on the effective temperature scale of M dwarfs. Astron. Astrophys. 305, L1– L4 (1996).

    ADS  CAS  Google Scholar 

  20. Sharp, C. M. & Huebner, W. F. Molecular equilibrium with condensation. Astrophys. J. Suppl. Ser. 72, 417– 431 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Nakajima, I. et al. Discovery of a cool brown dwarf. Nature 378, 463–465 (1996).

    Article  ADS  Google Scholar 

  22. Matthews, K. et al. Spectral energy distribution and bolometric luminosity of the cool brown dwarf Gliese 229B. Astron. J. 112, 1678–1682 (1996).

    Article  ADS  Google Scholar 

  23. Allard, F., Hauschildt, P. H., Baraffe, I. & Chabrier, G. Synthetic spectra and mass determination of the brown dwarf GL229B. Astrophys. J. 465, L123–L127 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Oppenheimer, B. R., Kulkarni, S. R., Matthews, K. & Nakajima, T. Infrared spectrum of the cool brown dwarf G1229B. Science 270, 1478–1479 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Becklin, E. E. & Zuckerman, B. Alow-temperature companion to a white dwarf star. Nature 336, 656–658 (1988).

    Article  ADS  Google Scholar 

  26. Tsuji, T., Ohnaka, K. & Aoki, W. Evolution of dusty photospheres through red to brown dwarfs: how dust forms in very low mass objects. Astron. Astrophys. 308, L29–L32 (1996).

    ADS  Google Scholar 

  27. Kirkpatrick, J. D. et al. An improved optical spectrum and new model fits for the likely brown dwarf GD 165B. Astrophys. J. (submitted).

  28. Tinney, C. G., Mould, J. R. & Reid, I. N. The faintest stars—infrared photometry, spectra and bolometric magnitudes. Astron. J. 105, 1045–1059 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Ruiz, M. T., Leggett, S. K. & Allard, F. Kelu-1: a free-floating brown dwarf in the solar neighborhood. Astrophys. J. 491, L107– L110 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Delfosse, X. et al. Field brown dwarfs found by DENIS. Astron. Astrophys. 327, L25–L28 ( 1997).

    ADS  Google Scholar 

  31. Tinney, C. G., Delfosse, X. & Forveille, T. DENIS-P J1228.2-1547—a new benchmark brown dwarf. Astrophys. J. 490, L95– L98 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Martín, E. L., Basri, G., Delfosse, X. & Forveille, T. Keck HIRES spectra of the brown dwarf DENIS-P J1228.2-1547. Astron. Astrophys. 327, L29–L32 (1997).

    ADS  Google Scholar 

  33. Allard, F., Hauschildt, P., Alexander, D. R. & Starrfield, S. Annu. Rev. Astron. Astrophys. 35, 137– 178 (1997).

    Google Scholar 

  34. Tinney, C. G., Delfosse, X., Forveille, T. & Allard, F. Optical spectroscopy of DENIS mini-survey brown dwarf candidates. Astron. Astrophys. 338, 1066–1072 (1998).

    ADS  CAS  Google Scholar 

  35. Oppenheimer, B. R., Kulkarni, S. R., Matthews, K. & van Kerkwijk, M. The spectrum of the brown dwarf Gliese 229B. Astrophys. J. 502, 932–943 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Schultz, A. B. et al. First results from the space telescope imaging spectrograph: optical spectra of Gliese 229B. Astrophys. J. 492, L181–L184 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. (submitted); also as preprint astro-ph/9807055 at 〈http://xxx.lanl.gov 〉 (1998).

  38. Scalo, J. M. The stellar initial mass function. Fund. Cosmic Phys. 11, 1–278 (1986).

    ADS  CAS  Google Scholar 

  39. Reid, I. N. & Gizis, J. E. Low-mass binaries and the stellar luminosity function. Astron. J. 113, 2246 –2269 (1997).

    Article  ADS  Google Scholar 

  40. Kroupa, P. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martín, E. L. & Zapatero Osorio, M. R.) 483–494 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, (1998).

    Google Scholar 

  41. Tinney, C. G. The faintest stars: the luminosity and mass functions at the bottom of the main sequence. Astrophys. J. 445, 1017– 1018 (1995).

    Article  ADS  Google Scholar 

  42. Adams, F. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martín, E. L. & Zapatero Osorio, M. R.) 3–10 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, (1998).

    Google Scholar 

  43. Basri, G., Marcy, G. W. & Graham, R. J. Lithium in brown dwarf candidates: the mass and age of the faintest Pleiades stars. Astrophys. J. 458, 600–609 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Rebolo, R., Zapatero Osorio, M. R. & Martín, E. L. Discovery of a brown dwarf in the Pleiades star cluster. Nature 377, 129–131 (1995).

    Article  ADS  CAS  Google Scholar 

  45. Magazzu, A., Martín, E. L. & Rebolo, R. Aspectroscopic test for substellar objects. Astrophys. J. 404, L17–L20 (1993).

    Article  ADS  Google Scholar 

  46. Tinney, C. G. The intermediate-age brown dwarf LP944-20. Mon. Not. R. Astron. Soc. 296, L42–L44 ( 1998).

    Article  ADS  CAS  Google Scholar 

  47. Thackrah, A., Jones, H. & Hawkins, M. Lithium detection in a field brown dwarf candidate. Mon. Not. R. Astron. Soc. 284, 507– 512 (1997).

    Article  ADS  CAS  Google Scholar 

  48. Martín, E. L., Zapatero-Osorio, M. R. & Rebolo, R. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martín, E. L. & Zapatero Osorio, M. R.) 507– 514 (ASP Conf. Ser. 134, Astron. Soc. Pacific, San Francisco, ( 1998).

    Google Scholar 

  49. Luhman, K. L. & Rieke, G. H. The low mass initial mass function in young clusters: L1495E. Astrophys. J. 497, 354–369 (1998).

    Article  ADS  CAS  Google Scholar 

  50. Comeron, F., Rieke, G. H. & Rieke, M. J. Properties of low-mass objects in NGC2024. Astrophys. J. 473, 294–303 (1996).

    Article  ADS  Google Scholar 

  51. Hambly, N. C., Steele, I. A., Hawkins, M. R. S. & Jameson, R. F. The very low-mass main sequence in the Galactic cluster Praesepe. Mon. Not. R. Astron. Soc. 273, 505– 512 (1995).

    Article  ADS  Google Scholar 

  52. Williams, D. M., Rieke, G. H. & Stauffer, J. R. The stellar mass function of Praesepe. Astrophys. J. 445, 359–366 (1995).

    Article  ADS  Google Scholar 

  53. Ashman, K. M. Dark matter in galaxies. Publ. Astron. Soc. Pacif. 104, 1109–1138 (1992).

    Article  ADS  Google Scholar 

  54. King, I. R., Anderson, J., Cool, A. M. & Piotto, G. The luminosity function of the globular cluster NGC 6397 near the limit of hydrogen burning. Astrophys. J. 492, L37 –L40 (1998).

    Article  ADS  CAS  Google Scholar 

  55. Piotto, G., Cool, A. M. & King, I. R. Acomparison of deep HST luminosity functions of four globular clusters. Astron. J. 113, 1345– 1352 (1997).

    Article  ADS  Google Scholar 

  56. Pulone, L., De Marchi, G., Paresce, F. & Allard, F. The lower main sequence of omega Centauri from deep hubble space telescope NICMOS near-IR observations. Astrophys. J. 492, L41–L44 (1998).

    Article  ADS  Google Scholar 

  57. Chabrier, G. & Mera, D. Determination of the globular cluster and halo stellar mass functions and stellar and brown dwarf densities. Astron. Astrophys. 328, 83–94 (1997).

    ADS  Google Scholar 

  58. Paczynski, B. Gravitational microlensing in the local group. Annu. Rev. Astron. Astrophys. 34, 419–460 ( 1996).

    Article  ADS  Google Scholar 

  59. Alcock, C. et al. The MACHO project Large Magellanic Cloud microlensing reuslts from the first two years and the nature of the galactic dark halo. Astrophys. J. 486, 697–726 (1997).

    Article  ADS  Google Scholar 

  60. Zaritsky, D. & Lin, D. N. C. Evidence for an intervening stellar population toward the Large Magellanic Cloud. Astron. J. 114, 2545–2555 (1997).

    Article  ADS  Google Scholar 

  61. Alcock, C. et al. EROS and MACHO combined limits on planetary-mass dark matter in the Galactic halo. Astrophys. J. 499, L9–L12 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank J. Hawthorn, P. Butler and H. Sim for comments, and G. Chabrier, I. Baraffe, B. Openheimer&J. D. Kirkpatrick for material used in the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinney, C. Brown dwarfs: the stars that failed. Nature 397, 37–40 (1999). https://doi.org/10.1038/16195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/16195

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing