Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The tumor suppressor p53 associates with gene coding regions and co-traverses with elongating RNA polymerase II in an in vivo model

Abstract

Sequence-specific transcriptional regulators function by stably binding cognate DNA sequences followed by recruitment of both general and specialized factors to target gene promoters. The tumor suppressor p53 mediates its anti-oncogenic effect on cells by functioning as a sequence-specific regulator. p53 employs a secondary mechanism to suppress tumor formation by permeabilizing the outer mitochondrial membrane, thereby releasing pro-apoptotic factors. Here, we report a potential third biological function of p53: as a transcriptional elongation factor. Using chromatin immunoprecipitation, we demonstrate that human p53 robustly associates with RNA polymerase II (Pol II), but neither Pol I- nor Pol III-transcribed regions in the budding yeast, Saccharomyces cerevisiae. p53's association with open reading frames is mediated by its physical interaction with elongating Pol II, with which p53 travels in vivo and co-immunoprecipitates in vitro. When similarly expressed, the potent acidic activator VP16 cannot be cross-linked to Pol II coding regions. p53 levels comparable to those found in induced mammalian cells confer synthetic sickness or lethality in combination with deletions in genes encoding transcription elongation factors; p53 likewise confers hypersensitivity to the anti-elongation drug 6-azauracil. Collectively, our results indicate that p53 can physically interact with the transcription elongation complex and influence transcription elongation, and open up new avenues of investigation in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Blau J, Xiao H, McCracken S, O'Hare P, Greenblatt J, Bentley D . (1996). Three functional classes of transcriptional activation domains. Mol Cell Biol 16: 2044–2055.

    Article  CAS  Google Scholar 

  • Brown SA, Weirich CS, Newton EM, Kingston RE . (1998). Transcriptional activation domains stimulate initiation and elongation at different times and via different residues. EMBO J 17: 3146–3154.

    Article  CAS  Google Scholar 

  • Candau R, Scolnick DM, Darpino P, Ying CY, Halazonetis TD, Berger SL . (1997). Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 15: 807–816.

    Article  CAS  Google Scholar 

  • Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D et al. (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499–509.

    Article  CAS  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.

    Article  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  Google Scholar 

  • Dammann R, Lucchini R, Koller T, Sogo JM . (1993). Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21: 2331–2338.

    Article  CAS  Google Scholar 

  • Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T, Yamaguchi H et al. (2006). Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22: 731–740.

    Article  CAS  Google Scholar 

  • Donner AJ, Szostek S, Hoover JM, Espinosa JM . (2007). CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 27: 121–133.

    Article  CAS  Google Scholar 

  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  Google Scholar 

  • Espinosa JM, Verdun RE, Emerson BM . (2003). p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12: 1015–1027.

    Article  CAS  Google Scholar 

  • Exinger F, Lacroute F . (1992). 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet 22: 9–11.

    Article  CAS  Google Scholar 

  • Fields S, Jang SK . (1990). Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049.

    Article  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257.

    Article  CAS  Google Scholar 

  • Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM . (2006). Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 20: 601–612.

    Article  CAS  Google Scholar 

  • Gross DS, Adams CC, Lee S, Stentz B . (1993). A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J 12: 3931–3945.

    Article  CAS  Google Scholar 

  • Hampsey M . (1998). Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62: 465–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  Google Scholar 

  • Kaeser MD, Iggo RD . (2004). Promoter-specific p53-dependent histone acetylation following DNA damage. Oncogene 23: 4007–4013.

    Article  CAS  Google Scholar 

  • Kennedy BK . (2002). Mammalian transcription factors in yeast: strangers in a familiar land. Nat Rev Mol Cell Biol 3: 41–49.

    Article  CAS  Google Scholar 

  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–830.

    Article  CAS  Google Scholar 

  • Komarnitsky P, Cho E-J, Buratowski S . (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14: 2452–2460.

    Article  CAS  Google Scholar 

  • Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13: 951–961.

    Article  CAS  Google Scholar 

  • Lee S, Gross DS . (1993). Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol Cell Biol 13: 727–738.

    Article  CAS  Google Scholar 

  • Lis JT, Wu C . (1993). Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4.

    Article  CAS  Google Scholar 

  • Mason PB, Struhl K . (2005). Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17: 831–840.

    Article  CAS  Google Scholar 

  • Mattia M, Gottifredi V, McKinney K, Prives C . (2007). p53-dependent p21 mRNA elongation is impaired when DNA replication is stalled. Mol Cell Biol 27: 1309–1320.

    Article  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  Google Scholar 

  • Nourani A, Howe L, Pray-Grant MG, Workman JL, Grant PA, Cote J . (2003). Opposite role of yeast ING family members in p53-dependent transcriptional activation. J Biol Chem 278: 19171–19175.

    Article  CAS  Google Scholar 

  • Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA . (2006). Activated signal transduction kinases frequently occupy target genes. Science 313: 533–536.

    Article  CAS  Google Scholar 

  • Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K et al. (2006). The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23: 241–250.

    Article  CAS  Google Scholar 

  • Saunders A, Core LJ, Lis JT . (2006). Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7: 557–567.

    Article  CAS  Google Scholar 

  • Schwabish MA, Struhl K . (2004). Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 24: 10111–10117.

    Article  CAS  Google Scholar 

  • Shinobu N, Maeda T, Aso T, Ito T, Kondo T, Koike K et al. (1999). Physical interaction and functional antagonism between the RNA polymerase II elongation factor ELL and p53. J Biol Chem 274: 17003–17010.

    Article  CAS  Google Scholar 

  • Sims RJ, Belotserkovskaya R, Reinberg D . (2004). Elongation by RNA polymerase II: the short and long of it. Genes Dev 18: 2437–2468.

    Article  CAS  Google Scholar 

  • Thiagalingam S, Kinzler KW, Vogelstein B . (1995). PAK1, a gene that can regulate p53 activity in yeast. Proc Natl Acad Sci USA 92: 6062–6066.

    Article  CAS  Google Scholar 

  • Thukral SK, Lu Y, Blain GC, Harvey TS, Jacobsen VL . (1995). Discrimination of DNA binding sites by mutant p53 proteins. Mol Cell Biol 15: 5196–5202.

    Article  CAS  Google Scholar 

  • Venturi CB, Erkine AM, Gross DS . (2000). Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol Cell Biol 20: 6435–6448.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine A . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219.

    Article  CAS  Google Scholar 

  • Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL et al. (1994). Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14: 7013–7024.

    Article  CAS  Google Scholar 

  • Zhao J, Herrera-Diaz J, Gross DS . (2005). Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 25: 8985–8999.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yoshi Odaka, Jorge Herrera-Diaz, David Chiluiza and Jing Zhao for technical assistance; Bert Vogelstein, David Bentley, Jef Boeke, Charles Di Como, Michael Green, Shile Huang, Jennifer Larson, Francesc Posas, Carol Prives, Kelly Tatchell and Fred Winston for gifts of plasmids, yeast strains, antibodies and mammalian cell lines; Alex Erkine for sharing unpublished genomic footprinting data and Mike Hampsey and Neal Mathias for critical reading of an earlier version of the manuscript. This work was supported by grants from the Feist-Weiller Cancer Center and the National Science Foundation (MCB-0450419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Gross.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, S., Gross, D. The tumor suppressor p53 associates with gene coding regions and co-traverses with elongating RNA polymerase II in an in vivo model. Oncogene 27, 2661–2672 (2008). https://doi.org/10.1038/sj.onc.1210935

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210935

Keywords

This article is cited by

Search

Quick links