Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer

Abstract

The ataxia-telangiectasia-mutated (ATM) kinase is a key transducer of DNA damage signals within the genome maintenance machinery and a tumour suppressor whose germline mutations predispose to familial breast cancer. ATM signalling is constitutively activated in early stages of diverse types of human malignancies and cell culture models in response to oncogene-induced DNA damage providing a barrier against tumour progression. As BRCA1 and BRCA2 are also components of the genome maintenance network and their mutations predispose to breast cancer, we have examined the ATM expression in human breast carcinomas of BRCA1/2 mutation carriers, sporadic cases and familial non-BRCA1/2 patients. Our results show that ATM protein expression is aberrantly reduced more frequently among BRCA1 (33%; P=0.0003) and BRCA2 (30%; P=0.0009) tumours than in non-BRCA1/2 tumours (10.7%). Furthermore, the non-BRCA1/2 tumours with reduced ATM expression were more often estrogen receptor (ER) negative (P=0.0002), progesterone receptor (PR) negative (P=0.004) and were of higher grade (P=0.0004). In our series of 1013 non-BRCA1/2 cases, ATM was more commonly deficient (20%; P=0.0006) and p53 was overabundant (47%; P<0.0000000001) among the difficult-to-treat ER/PR/ERBB2-triple-negative subset of tumours compared with cases that expressed at least one of these receptors (10 and 16% of aberrant ATM and p53, respectively). We propose a model of ‘conditional haploinsufficiency’ for BRCA1/2 under conditions of enhanced DNA damage in precancerous lesions resulting in more robust activation and hence increased selection for inactivation or loss of ATM in tumours of BRCA1/2 mutation carriers, with implications for genomic instability and curability of diverse subsets of human breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Angele S, Treilleux I, Bremond A, Taniere P, Hall J . (2003). Altered expression of DNA double-strand break detection and repair proteins in breast carcinomas. Histopathology 43: 347–353.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas C, Lukas J . (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J, Bartkova J . (2007). DNA damage response as an anti-cancer barrier. Damage threshold and the concept of ‘conditional haploinsufficiency’. Cell Cycle 6: 2344–2347.

    Article  CAS  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebæk NE, Sehested M, Lukas J et al. (2005b). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    Article  CAS  Google Scholar 

  • Bartkova J, Hořejší Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005a). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flowed D, Lopez E et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917.

    Article  CAS  Google Scholar 

  • Cleator S, Heller W, Coombes RC . (2007). Triple-negative breast cancer: therapeutic options. Lancet Oncol 8: 235–244.

    Article  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ . (1999). Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccini S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • Eerola H, Blomqvist C, Pukkala E, Pyrhonen S, Nevanlinna H . (2000). Familial breast cancer in Southern Finland: how prevalent are breast cancer families and can we trust the family history reported by the patients? Eur J Cancer 36: 1143–1148.

    Article  CAS  Google Scholar 

  • Eerola H, Heikkila P, Tamminen A, Aittomaki K, Blomqvist C, Nevanlinna H . (2005a). Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 7: R93–R100.

    Article  Google Scholar 

  • Eerola H, Heikkila P, Tamminen A, Aittomaki K, Blomqvist C, Nevanlinna H . (2005b). Relationship of patients' age to histopathological features of breast tumours in BRCA1 and BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 7: R465–R469.

    Article  CAS  Google Scholar 

  • Elston CW, Ellis IO . (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410.

    Article  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Honrado E, Benitez J, Palacios J . (2005). The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 18: 1305–1320.

    Article  CAS  Google Scholar 

  • Iggo R, Gatter K, Bartek J, Lane DP, Harris AL . (1990). Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335: 675–679.

    Article  CAS  Google Scholar 

  • Kastan M, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    CAS  Google Scholar 

  • Kilpivaara O, Bartkova J, Eerola H, Syrjakoski K, Vahteristo P, Lukas J et al. (2005). Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int J Cancer 113: 575–580.

    Article  CAS  Google Scholar 

  • Lassus H, Leminen A, Vayrynen A, Cheng G, Gustafsson JA, Isola J et al. (2004). ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol 92: 31–39.

    Article  CAS  Google Scholar 

  • Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T et al. (2001). DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 61: 4990–4993.

    CAS  PubMed  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . (2007). The DNA damage signalling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21: 43–48.

    Article  CAS  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    Article  CAS  Google Scholar 

  • McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al. (2006). Deficiency in the repair of DNA damage by homologous recombination and sensitivity to Poly(ADP-ribose) polymerase inhibition. Cancer Res 66: 8109–8115.

    Article  CAS  Google Scholar 

  • Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al. (2003). Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9: 3606–3614.

    CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Prokopcova J, Kleibl Z, Banwell CM, Pohlreich P . (2007). The role of ATM in breast cancer development. Breast Cancer Res Treat 104: 121–128.

    Article  CAS  Google Scholar 

  • Pylkas K, Tommiska J, Syrjakoski K, Kere J, Gatei M, Waddell N et al. (2007). Evaluation of the role of Finnish ataxia-telangiectasia mutations in hereditary predisposition to breast cancer. Carcinogenesis 28: 1040–1045.

    Article  CAS  Google Scholar 

  • Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M et al. (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38: 873–875.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Syrjäkoski K, Vahteristo P, Eerola H, Tamminen A, Kivinummi K, Sarantaus L et al. (2000). Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected Finnish breast cancer patients. J Natl Cancer Inst 92: 1529–1531.

    Article  Google Scholar 

  • Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ et al. (2000). Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157: 1467–1472.

    Article  CAS  Google Scholar 

  • Tommiska J, Eerola H, Heinonen M, Salonen L, Kaare M, Tallila J et al. (2005). Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11: 5098–5103.

    Article  CAS  Google Scholar 

  • Turner N, Tutt A, Ashworth A . (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4: 814–819.

    Article  CAS  Google Scholar 

  • Vahteristo P, Bartkova J, Eerola H, Syrjakoski K, Ojala S, Kilpivaara O et al. (2002). A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71: 432–438.

    Article  CAS  Google Scholar 

  • Vahteristo P, Eerola H, Tamminen A, Blomqvist C, Nevanlinna H . (2001). A probability model for predicting BRCA1 and BRCA2 mutations in breast and breast–ovarian cancer families. Br J Cancer 84: 704–708.

    Article  CAS  Google Scholar 

  • Vehmanen P, Friedman L, Eerola H, McClure M, Ward B, Sarantaus L et al. (1997). Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: strong evidence for additional susceptibility genes. Hum Mol Genet 6: 2309–2315.

    Article  CAS  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al. (2006). Chromatin relaxation in response to DNA double strand breaks: a novel ATM- and KAP-1-dependent pathway. Nat Cell Biol 8: 870–876.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (110663), Finnish Cancer Society, the Sigrid Juselius Foundation, the Research and Science Foundation of Farmos, the Emil Aaltonen Foundation, the Danish Cancer Society, the Danish National Research Fund, the Danish Centre for Translational Breast Cancer Research, MSMT (Grant no. 6198959216) and the European Commission (integrated projects ‘Active p53’, ‘DNA repair’ and ‘Mutant p53’).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Bartek or H Nevanlinna.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommiska, J., Bartkova, J., Heinonen, M. et al. The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene 27, 2501–2506 (2008). https://doi.org/10.1038/sj.onc.1210885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210885

Keywords

This article is cited by

Search

Quick links